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The retrieval of ocean surface wind speed from the recently launched CYGNSS constellation 

of satellites is characterized with respect to uncertainty, dynamic range, spatial resolution, 

spatial and temporal sampling, and data latency.

IN-ORBIT PERFORMANCE  
OF THE CONSTELLATION OF  

CYGNSS HURRICANE SATELLITES
Christopher Ruf, Shakeel Asharaf, Rajeswari Balasubramaniam, Scott Gleason, Timothy Lang, 

Darren McKague, Dorina Twigg, and Duane Waliser

T	he Cyclone Global Navigation Satellite System  
	(CYGNSS) is a NASA spaceborne mission  
	consisting of eight spacecraft in a common cir-

cular low Earth orbit at 35° inclination and 520-km 
altitude. The spacecraft carry radar receivers tuned 

to measure global positioning system (GPS) signals 
scattered from the ocean surface in the forward 
(specular) direction. This remote sensing method is 
commonly referred to as Global Navigation Satellite 
System reflectometry (GNSS-R). The strength of the 
scattered signals is affected by surface roughness and 
near-surface wind speed. CYGNSS estimates the wind 
speed from its radar measurements (Clarizia and Ruf 
2016a). Winds are measured continuously over the 
ocean in all weather conditions, although the mis-
sion objectives are focused on measurements made 
in and near the inner core of tropical cyclones (Ruf 
et al. 2016).

The CYGNSS constellation was successfully 
launched on 15 December 2016. Following an initial 
engineering commissioning phase, science measure-
ments began in March 2017 and have continued 
uninterrupted since then. Early science activities 
focused on development of the wind speed retrieval 
algorithm and validation of the data products. Nonpro-
visional public release of those products by the NASA 
PO.DAAC began in November 2017 at the end of the 
2017 Atlantic hurricane season (PO.DAAC 2018). More 
recently, science activities have focused on refinements 
to the data products (Gleason et al. 2018; Ruf and 

2009AMERICAN METEOROLOGICAL SOCIETY |OCTOBER 2019
Unauthenticated | Downloaded 06/23/21 02:31 PM UTC

mailto:cruf%40umich.edu?subject=
https://doi.org/10.1175/BAMS-D-18-0337.1
https://doi.org/10.1175/BAMS-D-18-0337.2
http://www.ametsoc.org/PUBSReuseLicenses


Balasubramaniam 2018), on assimilation of the wind 
speed data into numerical prediction models (Pu et al. 
2018; Zhang et al. 2017), and on the use of surface scat-
tering measurements made over land for soil moisture 
and flooding applications (Chew et al. 2018; Jensen 
et al. 2018; Kim and Lakshmi 2018; Ruf et al. 2018a).

Every NASA science mission has level 1 mission sci-
ence requirements (L1 requirements). Prior to launch, 
they are used as guiding principles to aid in design 
of the mission architecture and of the satellites and 
science payloads. Once on orbit, they continue to aid 
in decision-making about the mission execution. It is 
also useful to consider the requirements as metrics for 
mission success writ large. To that end, a quantitative 
assessment is presented here of CYGNSS performance 
with respect to each of its L1 requirements. More than 
simply an answer to the question “Is the CYGNSS 
mission a success?” the assessment provides a detailed 
characterization of the quantity and quality of science 
data products produced by the mission. It can serve 
as a guide for potential science data users who are not 
familiar with the details of the mission or its measure-
ment technique, to inform them of its capabilities and 
hopefully encourage them to consider using the data 
in their own science investigations.

The CYGNSS L1 requirements fall into several 
categories: spatial and temporal sampling proper-
ties; dynamic range and uncertainty of wind speed 
measurements; and data validation and support for 
operational data users. The requirements are itemized 
in Table 1. The table lists both baseline and, where 
different, threshold requirements. Baseline require-
ments stipulate the target level of performance used to 
inform mission design decisions. Threshold require-
ments define mission success criteria.

CYGNSS performance is assessed in the following 
section relative to each of the requirements in Table 1. 

In some cases, the assessment builds on previously 
published analyses of mission performance, updat-
ing them using more complete data records and more 
recent versions of the science data products. In other 
cases, new analyses are developed and their results 
presented.

REQUIREMENTS ASSESSMENT. Wind speed 
dynamic range. Both GNSS-R and conventional 
wind scatterometer sensors estimate wind speed 
indirectly from measurements of the radar cross 
section (RCS) of the ocean surface. The RCS is, in 
turn, determined by ocean surface roughness. In 
the case of conventional scatterometers, the radar 
receives the signal scattered back in the direction 
of its transmitter. This backscatter geometry results 
in the RCS being largely determined by the portion 
of the surface roughness spectrum near the Bragg 
resonant wavelength of the transmitted signal. In the 
case of scatterometers operating at C or X band, that 
wavelength is of order 2–10 cm. As a result, scatterom-
eters are sensitive to the smaller capillary waves that 
tend to be strongly coupled to the local wind speed 
(Ulaby and Long 2014). GNSS-R measurements, on 
the other hand, are made with a forward (specular) 
scattering geometry for which Bragg resonance does 
not occur. As a result, its RCS measurements are sen-
sitive to a broader range of the roughness spectrum 
that includes both capillary waves and longer swell 
(Zavorotny and Voronovich 2000). In an ideal fully 
developed sea state, with infinite fetch length and 
sea age, the energy introduced to the surface by lo-
cal wind forcing has sufficient time and distance to 
cascade from short (capillary) to long (swell) waves, 
and the broad roughness spectrum sensed by a GNSS-
R instrument is strongly coupled to the local wind 
speed. In young seas with limited fetch, the sea state 

Table 1. CYGNSS level 1 mission science requirements.

No. Requirement Baseline Threshold

1 Wind speed dynamic range at 5 km × 5 km resolution 3–70 m s–1 3–40 m s–1

2 Operation in presence of rain Yes Same as baseline

3a Retrieval uncertainty for winds > 20 m s–1 10% Same as baseline

3b Retrieval uncertainty for winds < 20 m s–1 2 m s–1 Same as baseline

3c Spatial resolution 25 km × 25 km or better 50 km × 50 km or better

4a 100% duty cycle during science operations Yes Same as baseline

4b Mean temporal resolution <12 h Same as baseline

4c Spatial sampling coverage of cyclone historical tracks in 24 h 70% 50%

5
Calibrate and validate CYGNSS data in individual wind speed 
bins above and below 20 m s–1 Yes Same as baseline

6 Support operational hurricane forecast community Yes Same as baseline
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is underdeveloped and only a portion of the rough-
ness spectrum is a direct response to the local wind. 
In practice, the time required for the portion of the 
roughness spectrum sensed by a GNSS-R instrument 
to respond to changes in wind speed is estimated to be 
0.4–1.8 h, depending on wind speed, fetch length, and 
atmospheric stability (Chen et al. 2016). As a result, 
in most open-ocean conditions in which the winds 
have been blowing steadily for 1–2 h, the sea state can 
be considered effectively fully developed for purposes 
of GNSS-R measurements. An important exception 
to this, which is addressed below, is the conditions 
in and near a tropical cyclone, where both the speed 
and direction of the wind can change more rapidly. 
One other important distinction between GNSS-R 
and conventional scatterometer measurements of the 
ocean lies in their relative sensitivity to wind direc-
tion. The RCS measured by a scatterometer is strongly 
dependent on wind direction and both the speed and 
direction can be determined given observations at 
multiple azimuthal angles. GNSS-R measurements, 
on the other hand, have a much weaker dependence 
on wind direction and only one azimuthal look angle. 
As a result, direction is not retrieved.

The near-surface wind speed estimated by 
CYGNSS is referenced to a height of 10 m. All wind 
speed requirements are with respect to this value, 
referred to as u10. Two wind speed estimates are 
produced for each measurement. One is the fully de-
veloped seas (FDS) estimate, which is appropriate to 
use in most conditions. The other is the young seas/
limited fetch (YSLF) estimate, which is used near 
the inner core of tropical cyclones (TCs) when the 
long-wave portion of the sea state has not responded 
fully to the local surface winds. Using a single YSLF 
characterization for all conditions in and near a 
TC is a simplifying approximation. For example, 
fetch length can vary by quadrant, depending on 
the relative orientation of the cyclonic rotation and 
the direction of translation of a storm. The use of a 
single YSLF assumption effectively averages across 
the range of departures from a fully developed state 
that are experienced in different quadrants of a TC. 
Incorporation of a more representative characteriza-
tion of the sea state within a TC into the CYGNSS 
wind speed retrieval algorithm is an area of active 
research that is expected to improve wind speed 
retrieval performance by, for example, reducing 
quadrant-dependent errors.

The wind speed dynamic range requirement has a 
lower bound of 3 m s–1 for both baseline and threshold 
cases. The upper bound is 40 m s–1 for the threshold 
requirement and increases to 70 m s–1 for the baseline 

requirement. In both cases, the relevant wind speed 
is a spatially averaged value over a 5 km × 5 km area. 
This definition is intended to support direct com-
parisons between CYGNSS and measurements by 
the stepped frequency microwave radiometer (SFMR) 
on the NOAA P-3 “hurricane hunter” aircraft, which 
measure u10 in the inner core of hurricanes during 
eyewall penetration f lights by the aircraft. SFMR 
measurements have a ~5-km spatial resolution when 
flying at typical altitude (Uhlhorn et al. 2017). For 
direct comparisons between CYGNSS and SFMR, 
the SFMR measurements are averaged for a time 
corresponding to forward motion of the P-3 aircraft 
by 20 km, producing a ~5 km × 25 km effective 
footprint. The CYGNSS effective footprint size is 
~25 km × 25 km.

Dynamic range can be determined in two ways: 
empirically, through direct comparisons with indepen-
dent, coincident measurements of wind speed; and by 
analysis, through extrapolation of the demonstrated 
performance to higher wind speeds by making as-
sumptions about the sensitivity of the measurements 
at those higher wind speeds. The empirical approach 
is more direct and is preferred, in particular because 
it does not require assumptions about measurement 
sensitivity above the demonstrated dynamic range. 
For this reason, we use the empirical approach over 
the range of wind speeds for which independent, 
coincident measurements are available. The matchup 
datasets used to assess the uncertainty in CYGNSS 
wind speed measurements are described in the “Wind 
speed retrieval uncertainty > 20 m s−1” and “Wind speed 
retrieval uncertainty < 20 m s−1” sections below. Over 
the range 1–20 m s–1, the assessment uses matchups 
with the Global Data Assimilation System (GDAS) 
numerical weather prediction model and with several 
buoy networks. Comparisons were also made with 
other NWP wind speed products, in addition to GDAS 
(e.g., ECMWF, MERRA-2). The matchup statistics 
are in each case very similar and are not included for 
brevity. Above 20 m s–1, the assessment uses matchups 
with SFMR during hurricane eyewall penetrations that 
were coincident with CYGNSS overpasses. The range of 
wind speeds in the SFMR matchups covers 20–54 m s–1. 
Direct empirical determination of the CYGNSS dy-
namic range thus covers wind speeds of 1–54 m s–1.

Operation in the presence of rain. Due to the well-
known scattering properties of microwave signals, it 
is expected that L-band measurements by CYGNSS 
should not be as sensitive to rain as measurements 
made at Ku band and C band (Marzano et al. 2000; 
Weissman et al. 2002; Tournadre and Quilfen 2003; 
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Milliff et al. 2004; Weissman and Bourassa 2008; Ruf 
et al. 2016; Meissner et al. 2017). Indeed, the stronger 
rain impacts at higher frequencies than L band have 
been exploited to make dual retrievals of both wind 
and rain by Ku- (Draper and Long 2004a,b; Nielsen 
and Long 2009; Owen and Long 2011) and C-band 
(Nie and Long 2007, 2008) wind scatterometers.

Following this logic, the ability of the CYGNSS 
mission to operate successfully in the presence of rain 
is demonstrated by comparing CYGNSS wind speed 
estimates to buoy-measured winds in precipitating 
conditions. For this analysis, we use the CYGNSS 
FDS wind speed estimates. While FDS winds are not 
expected to be accurate within TCs, the frequency 
and spatial coverage of major storms are so small at 
individual buoys that including these observations 
should not have a significant impact on results. Thus, 
no filtering for TCs was done in the dataset.

For 18 March 2017–23 August 2018, the Prediction 
and Research Moored Array in the Tropical Atlantic 
(PIRATA; Bourles et al. 2008), Research Moored Ar-
ray for African–Asian–Australian Monsoon Analysis 
and Prediction (RAMA; McPhaden et al. 2009), and 
Tropical Atmosphere Ocean (TAO; McPhaden et al. 
1998)/Triangle Trans-Ocean Buoy Network (TRITON) 
buoy datasets were matched to v2.1 CYGNSS winds 
in the following manner. All satellite observations are 
considered within 25 km and 0.5 h of buoy locations 
and times that featured hourly averaged wind data 
with either the highest or default data quality codes. 
Buoy winds are adjusted to 10-m height following Mo-
nin–Obukhov similarity theory (Zeng et al. 1998). An 
inverse-weighting scheme that accounts for distance 
between satellite footprint center and buoy location, 
time between the two different measurements, and 
buoy wind speed is applied to the satellite measure-
ments following Boutin and Etcheto (1990). Then the 

precipitation rate measured by each buoy equipped 
with a rain gauge is examined.

Figure 1 shows the results of this analysis. There 
was a total of 5,902 matchups between 18 March 2017 
and 31 December 2018. While there were relatively 
few wind estimates with rainfall rates greater than 
5 mm h–1, CYGNSS shows very little impact from 
increased rainfall rates. The best-fit line has a slightly 
positive slope of 0.003 m s–1 (mm h–1)−1, but the qual-
ity of fit is poor (correlation coefficient of 0.002) and 
nearly equal numbers of positively and negatively 
biased wind measurements exist at rain rates above 
5 mm h–1. The range of difference values is also simi-
lar regardless of rain rate. Asgarimehr et al. (2018) 
found that some rain effects can be seen in GNSS-R 
datasets, especially at low wind speeds (<6 m s–1). 
Disaggregating Fig. 1 by wind speed range (not 
shown) indicated a possibly similar positive bias in 
CYGNSS wind speeds in low-wind raining situations, 
but the number of available buoy matchups are even 
smaller than those available in Fig. 1, so confidence 
in this inference is low. Regardless, it is clear from 
Fig. 1 that any possible rain influence on CYGNSS 
observations is significantly smaller than the inherent 
uncertainty in the wind estimates themselves.

In summary, CYGNSS winds show little to no 
bias in the presence of rain when compared to buoys. 
Therefore, the ability of CYGNSS to operate success-
fully in the presence of rain is confirmed.

Wind speed uncertainty and resolution. Wind speed 
retrieval uncertainty > 20 m s–1. The assessment of 
YSLF wind speed retrieval uncertainty above 20 m s–1 
follows a similar approach to that presented in (Ruf 
et al. 2018b). That assessment used an earlier version 
(v2.0) of the CYGNSS data products. Here, we use 
the more recent v2.1 products, for which a number 

of improvements to the data calibration 
have been made, as described in Gleason 
et al. (2018) and Ruf and Balasubramaniam 
(2018). Matchups are compiled between 
CYGNSS and NOAA “hurricane hunter” 
aircraft measurements from 20 coincident 
storm overpasses during the 2017 Atlantic 
hurricane season. Aircraft flight lines were 
aligned during eyewall penetrations with 
CYGNSS specular point tracks. Coinci-
dence is defined by requiring that aircraft 
and CYGNSS tracks occur within 30 min 
and 12.5 km of one another. The 20 coin-
cident tracks include overpasses of Hur-
ricanes Harvey on day of year (DOY) 236 
(four tracks) and DOY 237; Irma on DOY 

Fig. 1. Scatterplot of CYGNSS winds at the analyzed buoys 
(negative means buoy values are higher) as functions of buoy 
precipitation rate at the same locations. Also shown is the 
best-fit line.
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248; Jose on DOY 258 (two tracks), DOY 259, and DOY 
264 (four tracks); and Maria on DOY 266 (two tracks), 
DOY 267 (four tracks), and DOY 270. Comparison 
wind speeds were measured by SFMRs installed on 
the aircraft. A histogram of the SFMR wind speeds 
measured during the overpasses is shown in Fig. ES1 
(see online supplement at https://doi.org/10.1175 
/BAMS-D-18-0337.2). The maximum wind speed in 
the histogram is 54 m s–1 (120 mph, category 3).

Examples of six of the hurricane overpasses are 
shown in Fig. 2. Both the winds retrieved by CYGNSS 
and measured by SFMR on the aircraft are shown.

A scatterplot with all wind speed matchups be-
tween CYGNSS and SFMR is shown in Fig. ES2a 
and a histogram of the difference between each pair 
of wind speeds is shown in Fig. ES2b (see online 
supplement). Considering only samples for which 
SFMR wind speed is greater than 20 m s–1, the RMS 

Fig. 2. Examples of CYGNSS overpasses of Hurricanes Harvey, Jose, and Maria during 2017 that were coincident 
with NOAA hurricane hunter aircraft flights. In each case, the storm, day of year (DOY) of the measurement, 
the incidence angle of the overpass, and the spatial resolution corresponding to that incidence angle are (top 
left) Harvey: DOY 236, 32.7°, and 22 km; (top right) Jose: DOY 258, 65.1°, and 36 km; (middle left) Jose: DOY 
264, 58.1°, and 33 km; (middle right) Maria (pass 1): DOY 266, 64.2°, and 35 km; (bottom left) Maria (pass 2): 
DOY 266, 58.3°, and 33 km; and (bottom right) Maria: DOY 267, 54.9°, and 31 km. SFMR measurement of u10 
are shown in red and CYGNSS measurements are shown in blue. SFMR tracks are truncated in time to meet 
the 30-min and 12.5-km collocation requirements.
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difference between CYGNSS and SFMR is 5.2 m s–1 
and the mean difference (bias) is 1.0 m s–1. When an 
uncertainty of 4 m s–1 for the SFMR measurements 
is removed (by root-sum-square subtraction), the 
remaining error ascribed to CYGNSS is 3.2 m s–1. The 
mean value of the SFMR wind speeds is 28.8 m s–1, so 
the relative CYGNSS uncertainty is 11.3% (=3.2/28.8). 
Note that the derived uncertainty in CYGNSS high 
wind retrievals depends on the uncertainty assumed 
for SFMR. The value of 4 m s–1 is based on the results 
by Uhlhorn et al. (2007). If a lower value were as-
sumed, for example, the derived uncertainty allocated 
to CYGNSS would be higher.

Wind speed retrieval uncertainty < 20 m s–1. For 
winds below 20 m s–1, the CYGNSS FDS winds are 
compared to u10 winds from the GDAS 6-hourly 0.25° 
blended vector sea surface winds (Zhang et al. 2006; 
www.ncdc.noaa.gov/data-access/marineocean-data 
/blended-global/blended-sea-winds). All CYGNSS 
data from June 2017 through October 2018 are used. 
The CYGNSS data are filtered using the level 2 qual-
ity f lags and are compared to GDAS winds, which 
are matched to the CYGNSS observations using 
nearest neighbor interpolation. The total number of 
CYGNSS/GDAS pairs is 67,967,456.

The level 2 quality flags test for a number of prob-
lems, any one of which will result in a data sample 
being excluded. The tests include 1) retrieved wind 
speeds below −5 m s–1, 2) difference between wind 
speed retrieved from the scattering cross section 
and from the radar return waveform (leading edge 
slope) differing by more than 10 m s–1, and 3) specular 
reflection lying outside of the range of adequate re-
ceive antenna gain. In practice, these filters typically 
remove a few percent of the total samples.

A density scatterplot of the matchups is shown 
in Fig. 3a. The areas of highest density in CYGNSS–
GDAS matchups lie along the one-to-one line, indi-
cating good agreement between the two estimates, 
with the highest density around 7 m s–1, as is expected 
given the distribution of global ocean winds, which 
is generally Rayleigh distributed with a peak near 
7 m s–1. Note that there are also some areas of rela-
tively high density away from the one-to-one line, 
for example, the high-density “lobes” for high wind 
estimates from either source.

The mean and RMS differences between CYGNSS 
and GDAS “ground truth” winds are shown in Fig. 3b. 
For winds below ~7 m s–1, the bias (GDAS − CYGNSS) 
is negative, indicating an overestimate by CYGNSS 
relative to GDAS for low winds, where the RMS dif-
ference is relatively constant at around 2 m s–1. The 

bias becomes positive above the peak in the wind 
distribution at 7 m s–1, indicating an underestimate by 
CYGNSS relative to GDAS for higher winds, with both 
the bias and the RMS difference increasing signifi-
cantly as a function of wind speed above ~10 m s–1. The 
sensitivity of the CYGNSS measurements decreases 
with increasing wind speed, resulting in higher overall 
uncertainty in the CYGNSS estimates at higher wind 
speeds. While both the bias and RMS differences ap-
proach 8 m s–1 at wind speeds of 20 m s–1, the overall 
uncertainty is weighted by the global distribution 

Fig. 3. (a) Log(density) scatterplot of CYGNSS and 
matchup GDAS wind speed samples used for estimat-
ing wind speed retrieval uncertainty below 20 m s–1. 
The diagonal black dashed line is the line of 1:1 agree-
ment. The color scale is the log10 of the number den-
sity of points. (b) RMS (blue line) and mean (red line) 
difference between collocated CYGNSS and GDAS 
winds below 20 m s–1 as a function of GDAS wind speed. 
The 95% confidence limit error bars are shown for the 
mean values, but they are very small because the total 
number of observations is ~68 million. The results are 
computed over a ±0.5 m s–1 bin widths every 1 m s–1.
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of winds, which has a maximum likelihood near 
7 m s–1. The total RMS difference between CYGNSS 
and GDAS for winds below 20 m s–1 is 2.31 m s–1. This 
includes not just uncertainties in the CYGNSS retriev-
als, but also uncertainties in the GDAS estimates and 
uncertainties in the spatiotemporal matchup of the 
two. Peng et al. (2013) estimate the uncertainty of the 
GDAS blended winds to be approximately 1.6 m s–1. 
Likewise, in a comparison with buoy data, Yu and 
Gerald (2004) estimate GDAS surface wind RMS 
uncertainties of 1.8 m s–1. Neglecting the matchup 
uncertainty term, this places an upper bound on the 
CYGNSS retrieval uncertainty for winds < 20 m s–1 of 
~1.67 m s–1 from root-difference-square subtraction. 
This is below the CYGNSS requirement of 2 m s–1 
uncertainty for wind speeds below 20 m s–1. Note 
that, while the average uncertainty below 20 m s–1 is 
less than 2 m s–1, it does rise above that level at the 
higher end of the range. Note also that the estimate 
of CYGNSS uncertainty is sensitive to the assumed 
error in GDAS and will increase as the assumed error 
in GDAS decreases.

The increase in retrieval bias and RMS difference 
with increasing wind speed is examined in Ruf et al. 
(2018b) and found to result from several factors. The 
primary one is a decrease in sensitivity with increas-
ing wind speed. The geophysical model function 
(GMF) that maps normalized bistatic radar cross 
section (NBRCS) to u10 is nonlinear and exhibits a 
decreasing slope with increasing wind speed, with the 
result that the same uncertainty in measured NBRCS 
will cause a larger uncertainty in estimated u10 at high 
wind speed than at low wind speed.

A second, independent assessment of FDS wind 
speed uncertainty is also performed using matchups 
with coincident measurements by tropical buoys. 
Figure ES3 (see online supplement) shows the 
buoy–satellite matchup sample sizes at the tropical 
buoy locations. A total of 76 buoys were available 
after applying the matchup criteria described in the 
“Operation in the presence of rain” section, leading to 
an aggregated sample size of 12,164. The buoy array 
provides in situ wind speed values from the Indian, 
Pacific, and Atlantic Oceans, with most buoys lying 
equatorward of 15°. After restricting the CYGNSS 
winds to be below 20 m s–1, the total number of 
samples is reduced to 12,155.

A 2D density scatterplot of the collocated samples 
is shown in Fig. 4a. The statistical metrics of root-
mean-square difference (RMSD), standard deviation 
difference, correlation coefficient, and mean bias 
between CYGNSS and buoys are given in the figure. 
The scatterplot demonstrates a linear relationship 

between CYGNSS and in situ observations. The 
highest density of points (reddish colors) lies along 
the 1:1 line concentrated within the wind range of 
5–7 m s–1, which is consistent with the previous study 
of Ruf et al. (2018b), although they used ECMWF as 
the observation reference. The RMSD is ~1.7 m s–1 
and the mean bias is near zero. This upper bound 

Fig. 4. (a) A 2D density plot of collocated CYGNSS and 
tropical buoy wind speeds. The diagonal gray line is the 
1:1 agreement. The statistical parameters RMSD, µ, 
σ, and N are the root-mean-square difference (buoy 
− CYGNSS), mean bias, standard deviation of the dif-
ference, and the total sample size of the collocated 
CYGNSS and buoy wind data, respectively. (b) RMS 
(blue line) and mean (red line) difference between col-
located CYGNSS and buoy wind speeds as a function 
of buoy wind speed. The error bars correspond to the 
95% confidence limit. These metrics are computed 
over a ±0.5 m s–1 bin width for every 1 m s–1 buoy wind 
speed. Dashed horizontal lines tick the y axis at 1 m s–1 
wind interval. The light gray bars and label on top of 
each bar indicate the sample size in each group of 
±0.5 m s–1 bin width.
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on CYGNSS retrieval uncertainty is consistent 
with the results reported above based on matchups 
between CYGNSS and GDAS. It is noteworthy that 
CYGNSS has slightly more measurements above 
15 m s–1 than do the buoys, suggesting that CYGNSS 
may be biased in this high wind range–at these low 
latitudes, although the number of samples in this 
range is quite low (~50 for CYGNSS compared to 
~5 for the buoys).

Figure ES4 (see online supplement) shows the fre-
quency distribution of wind speed for CYGNSS and 
the buoys. Although the shape of the two distribu-
tions is very similar, there are some small but notice-
able differences in some wind speed ranges, including 
a shift in the wind speed of maximum likelihood. 
For example, compared to the buoy values, CYGNSS 
exhibits an overestimation in the wind speed range of 
~3.5–6.5 m s–1 and an underestimation in the higher 
wind speed range of ~7.5–10.5 m s–1.

Similar to the top-down analyses of Ruf et al. 
(2018b), the dependencies of the bias and RMSD 
between buoy and CYGNSS winds on the buoy wind 
speed values were analyzed and the results are shown 
in Fig. 4b. In general, the bias (buoy minus CYGNSS) 
is negative for low boy wind speeds (<~6 m s–1), near 
zero in the buoy wind range of ~6–8 m s–1, and 
becomes positive at higher wind speeds, growing 
to near +4 m s–1 at speeds near 15 m s–1. Note that 
a very few collocated samples (<10) are available at 
this wind range (Fig. 4b). The RMSD values remain 
below 2 m s–1 throughout the wind speed range of 2 
to ~10 m s–1.

Spatial resolution. The spatial resolution of CYGNSS 
wind speed measurements is largely determined by 
the area of the surface bounded by the delay and 
Doppler ranges of the delay Doppler map (DDM) area 
(DDMA) used by the wind speed retrieval algorithm 
(Clarizia and Ruf 2016a). The DDMA includes propa-
gation delays of up to 500 ns and Doppler shifts of 
up to 1,000 Hz relative to their values at the specular 
point (Gleason et al. 2018). We define the surface 
bounded by the DDMA as the instantaneous field of 
view (IFOV), which is consistent with the definition 
used by Clarizia and Ruf (2016a). The IFOV does not 
include the effects of the GPS spreading function, 
which increases the effective surface area. This can 
theoretically add up to 25% to the IFOV surface area 
(Clarizia and Ruf 2016b). However, empirical land 
crossing analysis (described below) shows the spatial 
resolution to be fairly close to the IFOV alone.

The IFOV is dependent on observatory altitude, 
with higher altitudes resulting in larger spatial 

resolution. Figure ES5 (see online supplement) il-
lustrates the IFOV as a function of incidence angle 
for the high- and low-altitude limits of the CYGNSS 
orbit. The IFOV exceeds the CYGNSS baseline re-
quirement of 25 km for incidence angles higher than 
39.6° and 36.3° at the lowest and highest altitudes, 
respectively. The resolution meets the threshold re-
quirement of 50 km at all incidence angles.

Figure ES6 (see online supplement) illustrates 
how spatial resolution affects the CYGNSS mean 
daily coverage. Two versions of the calibration are 
considered. Version 2.1 calibration does not correct 
for transmit power fluctuations by the GPS block type 
IIF satellites, with the result that they are not included 
for wind speed retrievals. This reduces the mean daily 
coverage by approximately 37%. However, version 3.0 
calibration is able to correct for these fluctuations, 
which increases the number of wind observations 
available and improves the mean daily coverage sta-
tistic. Figure ES6 shows that the CYGNSS baseline 
mean daily coverage requirement is met by v3.0 and 
the threshold requirement is met by v2.1.

As an overall estimate of CYGNSS spatial resolu-
tion, a weighted average is taken of the IFOV as a 
function of incidence angle, weighted by the distri-
bution of observations at each incidence angle. This 
results in an overall spatial resolution for the NBRCS 
and the wind speed derived from it of 25.4 km.

For an empirical examination of the spatial resolu-
tion, we consider the effects of land on measurements 
over ocean near the coastline. Figure 5a shows a 
land–ocean–land CYGNSS track near the Florida 
Panhandle. The incidence angle of the observation 
is 15°. Measurements in the figure between sample 
times 44 and 51, at distances to land of >15 km, show 
negligible land contribution, suggesting that the 
IFOV shown in Fig. ES5 is a conservative estimate of 
spatial resolution.

As an additional demonstration of land contamina-
tion close to the coast, we consider a reflection track at 
a higher incidence angle of 44°, where the effects of land 
are more noticeable. Figure 5b shows the track mov-
ing south from the ocean to the Great Sandy Desert 
in northern Australia. Contamination from land con-
tributions is clearly evident in the DDMA at roughly 
second 51. The green box in the figure (DDM 51) shows 
how the power changes due to land contributions. The 
integration end point of DDM 50 (start point of DDM 
51) is roughly 28.5 km from the shoreline, which is 
consistent with the IFOV predicted in Fig. ES5 for an 
observation at an incidence angle of 44°.

A further examination of the spatial resolution 
over land under conditions of coherent ref lection 
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from smooth inland wa-
ter bodies is considered 
in the online supplement. 
In this case, the resolu-
tion improves significantly 
and varies between ~500 
and ~1,500 m, depend-
ing on incidence angle, 
as shown in Fig. ES7 (see 
online supplement) and 
on the ground speed of 
the specular point motion, 
as shown in Fig. ES8 (see 
online supplement). One 
example of coherent specu-
lar reflection while cross-
ing an inland water body 
is shown in Fig. ES9 (see 
online supplement).

Sampling properties. Duty 
cycle of science opera-
tions. The GPS science 
radar receivers on each 
CYGNSS spacecraft can 
operate in t hree data-
taking modes. The “com-
p r e s s e d  DDM ”  m o d e 
produces four DDMs of 
surface scattering cross 
section per second. They 
are centered on the avail-
able specular points with 
h i g he s t  me a su rement 
sensitivity and map the 
diffuse scattering within 
several tens of kilometers 
of the specular point. The 
“full DDM” mode mea-
sures scattering near the 
same four specular points 
but over a broader region, 
typically within several 
hundred kilometers of the specular point, and with 
higher precision (Gleason et al. 2016). The “raw IF” 
mode records a bit stream of raw data samples prior 
to any onboard processing. The full DDM and raw IF 
modes have data rates that are two and four orders 
of magnitude higher than that of the compressed 
DDM mode, respectively. They provide enhanced 
measurement quality during special science opera-
tions that are commanded from the ground. The 
compressed DDM mode is used most of the time and 

its data products are assumed for all performance 
assessments considered here.

The spacecraft power, thermal, and data telemetry 
systems are all designed to support continuous opera-
tion in compressed DDM mode. All spacecraft oper-
ate in this mode except during autonomous recovery 
from unexpected anomalies or when performing 
differential drag adjustments to the intersatellite 
spacing of the constellation. Downlink data telem-
etry bandwidth is the primary factor that dictates 

Fig. 5. (a) An oblique land–ocean–land CYGNSS track off the Florida Pan-
handle. In this case, the low observation incidence angle (approximately 15°) 
results in minor land contamination at distances of ~15 km from the shoreline. 
(b) Ocean–land crossing DDMA power fluctuations at 44° incidence. Land 
contributions are clearly evident in the DDMA at roughly second 50/51 in the 
track. The green box (DDM 51) indicates the DDM power changes due to land 
reflection contributions. The integration end point of DDM 50 (start point 
of DDM 51) is roughly 28.5 km from the shoreline, consistent with Fig. ES6.
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operation in compressed DDM mode. It is possible 
to downlink all the compressed DDM data acquired 
over a continuous 48-h period using one contact with 
a ground station lasting ~8 min. Full DDM mode, 
with its two order of magnitude greater data rate, 
requires that much more ground contact time. Raw 
IF mode requires four orders of magnitude greater 
ground contact time. As a result, these special sci-
ence modes are typically only used for brief periods 
of time while passing over target areas of interest. For 
example, full DDM and raw IF measurements have 
been made while passing over the inner core regions 
of tropical cyclones.

Temporal revisit. Revisit time is defined here as the 
time separation between sequential measurements 
within the same ¼° × ¼° latitude–longitude bin by 
any CYGNSS observatory. The revisit times for every 
bin with more than one sample are averaged together 
to produce the reported mean revisit time. Bins with 
no resamples are not included in the average.

Figure 6 shows the revisit time over the life of the 
mission, with a histogram of the values shown in 
Fig. ES10 (see online supplement). The mean revisit 
time over the entire mission is 9.1 h, which meets the 
mission requirement of 12 h. All instances for which 
the requirement was exceeded occurred when mul-
tiple observatories were not in science mode due to 
high-drag maneuvers, safing events, or data loss due 
to onboard data processing anomalies. The depen-
dence of revisit time on the number of observatories 
that are in science mode is shown in Fig. 7a. The 
dependence is fairly strong, with an approximately 
linear relationship between revisit time and number 
of observatories.

Fig. 6. Time series of CYGNSS L2 revisit time (blue) relative to the mission level requirement of 12 h (black). 
The mean revisit time for the entire mission is 9.1 h. A total of 231 revisit time samples were computed between 
18 Mar 2017 and 31 Oct 2018 at time intervals for which spatial coverage is >70% (approximately every 46 h). 
The baseline requirement of 12 h was met by 96% of samples. Revisit time statistics are minimum = 6.68 h, 
maximum = 23.27 h, mean = 9.08 h, and standard deviation = 2.06 h.

Fig. 7. CYGNSS sampling properties as a function of 
the number of observatory days (1 observatory day = 
1 observatory operating for 1 full day) in nominal sci-
ence data-taking mode. (a) Revisit time − mean time 
between samples of ¼° × ¼° bins within ±35° latitude. 
(b) Spatial coverage − fraction of ¼° × ¼° bins within 
±35° latitude that are sampled in 24 h, broken out by 
science processing version 2.1 (blue) and version 3.0 
projected (green).
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Spatial coverage. Spatial coverage is defined as the 
percentage of ¼° × ¼° bins within ±35° latitude in 
which wind speeds are measured over 24 h. The 
baseline and threshold requirements are 70% and 
50%, respectively. Spatial coverage for the mission to 
date is shown in Fig. 8. The latest version of CYGNSS 
data, v2.1, released on 21 September 2018 (blue data 
in Fig. 8), provides a mean of 50% spatial coverage, 
meeting the threshold requirement. Version 2.1 data 
excludes any observations using block type IIF GPS 
satellites, removing approximately 37% of the avail-
able data. Version 3.0 (dashed data in Fig. 8), which is 
under development, will include near-real-time esti-
mates of GPS transmitted power from the CYGNSS 
zenith antenna measurements. This will allow for the 
inclusion of block type IIF data. Spatial coverage is 
projected to rise to 74% with this update, exceeding 
the mission baseline requirement of 70%. There is a 
strong correlation between the number of observato-
ries in science mode (green data in Fig. 8) and spatial 

coverage. Figure 7b shows the dependence of spatial 
coverage on the number of observatories in science 
mode for the current v2.1 data as well as projections 
for the upcoming v3.0 data. As with revisit time, this 
dependence is fairly strong, with a roughly linear 
relationship between the two. Maps of the typical 
coverage provided by the complete constellation of 
eight observatories over one orbit and one day are 
shown in Fig. 9.

Data latency. Data latency is defined as the elapsed 
time between the downlink of raw CYGNSS data at a 
ground station and the availability of calibrated science 
data products at the PO.DAAC. There is no L1 mission 
science requirement for this metric, but there is an 
expectation that the data latency will remain under 
6 days. Since the release of v1.1 data in June 2017, the 
mean data latency has been 2.7 days. Automation of 
science processing, begun in January 2018, has further 
reduced the mean data latency to 2.1 days.

Fig. 8. Time series of CYGNSS spatial coverage for v2.1 (blue) and v3.0 (dashed) data along with number of 
observatory days (1 observatory day = 1 observatory operating for 1 full day) in science mode (green). Version 
3.0 coverage is projected because this version is not scheduled for public release until later in 2019. There are 
a total of 685 daily spatial coverage samples between 18 Mar 2017 and 31 Oct 2018. 52% of v2.1 samples are 
above the threshold requirement of 50% coverage. Nearly all of v3.0 coverage samples will exceed the threshold 
requirement, and 77% will exceed the baseline requirement of 70% coverage. Coverage statistics for v2.1 are 
mean = 51%, median = 50%, standard deviation = 6%, minimum = 11%, and maximum = 61%. Statistics for v3.0 
are mean = 75%, median = 74%, standard deviation = 9%, minimum = 17%, and maximum = 91%.
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Cal/val activities. Calibration and valida-
tion (cal/val) activities for the CYGNSS 
mission have focused on its primary 
level 1 and level 2 science data products. 
The primary L1 product is the NBRCS 
of the ocean surface and the primary L2 
product is u10. Postlaunch efforts to cali-
brate the NBRCS have improved char-
acterization of the signals transmitted 
by each GPS satellite (Wang et al. 2018), 
improved characterization of the radar 
receiver hardware on each CYGNSS 
satellite, and refined the calibration of 
signal power received by the radars. 
Overall NBRC measurement uncertainty 
is ±0.4-dB RMS (Gleason et al. 2018).

Calibration of the u10 data prod-
ucts consists of developing a geophysi-
cal model function (GMF) that maps 
NBRCS to u10. Development of the GMF 
is described in detail in Ruf and Balasu-
bramaniam (2018). The GMF is used by 
the wind speed retrieval algorithm to es-
timate u10 from measurements of NBRCS 
(Clarizia and Ruf 2016a). Validation of 
the u10 data products is performed by 
statistical comparisons between the CYGNSS measure-
ments and independent measurements of u10 that are 
nearly coincident in space and time. Below 20 m s–1, the 
comparisons are made with GDAS reanalysis numeri-
cal model predictions. Above 20 m s–1, they are made 
with measurements made by the SFMR instruments 
on NOAA P-3 “hurricane hunter” aircraft, which flew 
coordinated eyewall penetrations of hurricanes at 
the same time and along the same track as CYGNSS 
overpasses of the storms. Details of both compari-
sons are given above, in the “Wind speed retrieval 
uncertainty > 20 m s−1” and “Wind speed retrieval 
uncertainty < 20 m s−1” sections.

Hurricane operations support. CYGNSS is a research, 
as opposed to operational, mission. Its primary ob-
jectives focus on producing science data products 
with specific spatial and temporal resolution and 
measurement uncertainty. The data products sup-
port a number of science investigations, including 
TC process studies, characterizing air–sea surface 
f luxes, understanding tropical convection dynam-
ics, modeling and forecasting storm surge, and, over 
land, measuring surface soil moisture and mapping 
flood inundation. Several of the investigations also 
examine the potential for CYGNSS measurements 
to be used in support of hurricane operations. The 

potential impact of CYGNSS wind speed measure-
ments on numerical hurricane forecasts has been 
examined using observing system simulation experi-
ments (OSSEs) (McNoldy et al. 2017; Annane et al. 
2018; Leidner et al. 2018). In each OSSE investigation, 
the potential was demonstrated, using simulated 
CYGNSS measurements in the inner core of TCs, for 
a significant positive impact on hurricane track and 
intensity forecast skill.

Since the CYGNSS launch and completion of its 
early on-orbit commissioning and calibration, case 
studies have been conducted of the impact on forecast 
skill of assimilating actual flight data into the opera-
tional Hurricane Weather Research and Forecasting 
Model (HWRF). These studies “replay” some of the 
major 2017 Atlantic hurricanes and examine the dif-
ferences between forecasts made with and without 
CYGNSS data included (Annane et al. 2019; Cui et al. 
2019a,b). In each case, positive impacts on forecast 
skill are demonstrated when CYGNSS observations 
are added to the standard suite of observations input 
to HWRF. However, these studies are still in their early 
stages. More refined methods of data assimilation and 
more comprehensive evaluations of performance are 
expected before CYGNSS wind speed measurements 
are ready to be used on an operational basis by HWRF 
or other operational numerical forecast models.

Fig. 9. Typical coverage maps for the complete constellation of 
eight observatories after (top) one 95-min orbit and (bottom) 
over a complete 24-h interval.
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SUMMARY AND CON-
CLUSIONS. CYGNSS per-
formance relative to its L1 mis-
sion science requirements is 
summarized in Table 2. The 
current best estimate (CBE) of 
performance is reported and 
compared to each L1 require-
ment. Cases where the baseline 
requirement is met or exceed-
ed necessarily also exceed the 
threshold requirement. Cases 
where the baseline requirement 
is not met but the threshold is 
are so noted. In all cases but one, 
either the baseline or threshold 
requirement is met or exceeded. 
The one outlier case is wind 
speed retrieval uncertainty at 
wind speeds above 20 m s–1. The 
common baseline and threshold 
requirement is an uncertainty of 10%. The current CBE 
performance is an uncertainty of 11.3%.

L1 mission science performance is expected to 
improve as a result of planned future improvements 
to calibration and data processing. In particular, the 
upgrade to v3.0 calibration, which will include a real-
time correction for variations in the transmit power of 
the GPS satellites, is expected to improve the temporal 
and spatial sampling properties of the constellation 
as well as the accuracy of NBRCS calibration. This 
should, in turn, reduce the uncertainty in the wind 
speed retrievals at both high and low wind speed 
levels. Whether the high wind speed uncertainty will 
be lowered below the 10% requirement level remains 
to be seen. However, the preliminary results of data 
assimilation into HWRF (e.g., in Cui et al. 2019b) 
suggest that, even at the current 11.3% level of uncer-
tainty, there is already useful information about the 
TC inner core wind field contained in CYGNSS mea-
surements. The CYGNSS wind measurements during 
TC overpasses may also improve the characterization 
of storm wind structure, and estimation of significant 
wind radii. This is an area of active research by the 
project (Morris and Ruf 2017; Krien et al. 2018).
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