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Abstract— An analysis of the coherency properties of specular
scattering from ocean and land surfaces as observed in global
navigation satellite system-reflectometry (GNSS-R) and signals of
opportunity systems is presented. This analysis applies existing
approximate models for the coherent and incoherent contri-
butions. Approximate expressions are developed for when one
component of the return is likely to dominate as a function of
surface and observing system properties. The model developed is
then applied for sea surface returns, and the relative contribution
of the coherent term is expressed as a function of the receiver
height, frequency, incidence angle, and wind speed. For L-band
spaceborne measurements, it is shown that coherence is expected
only for wind speeds less than 2–3 m/s, while for P-band
spaceborne measurements, coherence can dominate returns for
wind speeds up to 5–7 m/s. For land surface measurements
from space, it is shown that the surface rms height needs to
be sufficiently low for coherent components to dominate returns.
Coherence dominates for roughness values not exceeding a range
of 5–7 cm for the L-band and 15–30 cm for the P-band. For
the L-band, these conditions over land are likely to be created
primarily by inland water bodies. A model for the specular
scattering from a water body, including earth curvature effects,
is then developed to highlight the strong dependence of the
resulting coherent field on the shape of the water body and
any offset in its location from the specular point. These results
further clarify the significant variability that should be expected
in coherent scattering from inland water bodies.

Index Terms— Bistatic systems, coherency, incoherency,
random media, rough surface scattering.

I. INTRODUCTION

THE use of the transmissions of existing RF systems (also
known as “signals of opportunity” or SoOp) for earth

remote sensing is of increasing interest. The transmissions
of Global Navigation Satellite System (GNSS), in particular,
have been explored for remote sensing applications [1]–[14] in
the field known as GNSS-reflectometry (GNSS-R). GNSS-R
emphasizes the use of the L-band signals, while other SoOp
investigations have used transmitters in P , S, Ku , or other
bands [15]–[19]. Both GNSS-R and SoOp measurements
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Fig. 1. Example CYGNSS DDMs demonstrating (Left) incoherent
and (Right) coherent returns; color scale is in instrument raw counts that
are proportional to signal power. Incoherent DDM measured by CYG01 at
23.29◦N 42.42◦W on DOY 246, 2017 with wind speed estimate ≈6 m/s.
Coherent DDM measured by CYG03 at 32.427◦N 91.011◦W on DOY 258,
2018 over the Mississippi River.

for remote sensing are typically performed in a specular
scattering geometry because earth-reflected signals have the
greatest amplitude at specular scattering. The earth-reflected
signals received are then typically used to create delay-Doppler
map (DDM) measurements. The DDM maps the power scat-
tered from Earth’s surface as a function of time delay (τ ) and
Doppler frequency ( f ) shifts from the specular point on the
surface (see Fig. 1).

Over ocean surfaces at the L-band, it is typically assumed
that returns are “incoherent” and, therefore, described by the
bistatic radar equation [20], [21]. The sea surface specular
normalized radar cross section (NRCS) can then be modeled
in many cases using the geometric optics’ (GOs) limit of the
Kirchhoff approximation for rough surface scattering, which
results in the “horseshoe” shape of the DDM shown in Fig. 1
(left). The use of the GO limit requires that the surface rms
height is at least a significant fraction of the electromagnetic
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Fig. 2. Bistatic specular scattering geometry.

wavelength, which is typically satisfied at the L-band and
higher frequencies except at the lowest wind speeds. When
the surface rms height is reduced, the specular scattering can
become “coherent,” resulting in a DDM characterized by a
sharp response about the specular point [Fig. 1 (right)] whose
amplitude in some cases can be many times larger than typical
incoherent returns.

This article investigates these coherent returns and develops
an approximate model for the relative contributions of coherent
and incoherent scattering for sea and land surfaces. It is noted
that here “coherence” is defined to be the result of a scattering
process in which the fields scattered from a significant portion
of the observed Earth surface arrive at the receiver having
similar phase shifts and therefore add coherently. The term
“coherence” is also used in referring to the coherence time
of observed scattered fields, which is not considered in this
article, and which also depends on the relative velocities of
the transmitter and receiver with respect to the specular region
on earth’s surface.

Section II develops the approximate model, and Section III
applies it to the specific case of specular scattering from
the ocean surface. Section IV then considers land surface
coherent scattering and shows that for spaceborne L-band
observations, coherent contributions are most likely associated
with inland water bodies. Section V then develops a model for
inland water body coherent reflections that is examined and
later specialized for rectangular water bodies as an example.
The results demonstrate the significant fluctuations that can
occur due to water body shape and spatial offsets. Section VI
presents a concluding discussion of this article’s results.

II. BACKGROUND

Fig. 2 shows the forward scattering geometry of interest.
In it, a SoOp transmitter illuminates a specular point on
earth’s surface from which the forward scattered fields are
observed by a receiver. The transmitter and receiver positions
are described by the vectors r T = rt r̂T and r R = rRr̂R ,
respectively, from the specular point; the coordinate sys-
tem is defined so that these vectors lie in the xz plane.
The forward scattering geometry is defined by the condition
ẑ · r̂T = ẑ · r̂R = cos θ , i.e., the specular reflection condition

is satisfied at the specular point. The DDM produced includes
scattering from the specular point as well as other points on
earth’s surface at position r with respect to the specular point.
The example of a spherically curved earth surface truncated
over a rectangular boundary between X1 and X2 along x and
Y1 and Y2 along y is also shown in Fig. 2; specular scattering
for this particular boundary is explored in greater detail in
Section V.

A. Approximation for Coherent Power

A smooth surface will have most of the incident power
reflected toward the receiver from the specular point with a
peak power that can be many times larger than that arising
from incoherent scatter due to the coherent summation of
scattered fields that occurs for a flat surface. This “coherent
component” is described by the Friis transmission equation
(additional information in Section V) modified by a term
accounting for the reduction of the reflection coefficient caused
by surface roughness

Pcoh
R = PT λ

2G R GT

(4μ)2(rR + rT )2
· |�|2 · Z f · e−4k2

0 h2 cos2 θ (1)

where Pcoh
R is the coherent component of the received power

and PT is the transmitted power. Also GT and G R are the
transmit and receive antenna gains in the direction of the
specular point, and � is the surface Fresnel reflectivity for
incidence angle θ and the appropriate polarization combina-
tion. The exponential term determines the coherent reflection
loss (CRL) caused by surface roughness, which in decibels
can be written as

CRL = −10 · log10
(
e−4k2

0 h2 cos2 θ
)

(2)

where k0 = (2μ/λ) is the electromagnetic wavenumber with λ
the electromagnetic wavelength and h is the surface rms height
(and h2 the surface height variance). Finally, an additional term
Z f is included to account for the influence of the area/shape of
the smooth surface region relative to the Fresnel zone, as will
be further explored in Section V.

The coherent received power is often assumed to arise from
the first Fresnel zone area surrounding the specular point,
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Fig. 3. Orbital altitude versus first fresnel zone average diameter F1m for
curved earth.

within which the surface must be sufficiently smooth to cause
coherent reflections [i.e., the exponential term in (1) is still
appreciable]. For a spherically curved earth surface, the first
Fresnel zone is approximately an ellipse having semi-major
and semi-minor axes F1x and F1y expressed through

F1 =
√

λ(rRrT )

(rR + rT )
(3)

Dx =
√

1 + 2
F1

aeff

F1

λ cos θ
(4)

Dy =
√

1 + 2
F1

aeff

F1 cos θ

λ
(5)

F1x = F1

Dx cos θ
(6)

F1y = F1

Dy
(7)

where aeff is the earth’s radius of curvature at the specu-
lar point [(27) provides the relevant formulation for these
equations]. The terms Dx and Dy represent “divergence fac-
tors” caused by earth’s curvature. We can further define an
“average” Fresnel zone diameter as twice the geometric mean
F1m = 2(F1x F1y)

1/2. Fig. 3 plots F1m using (6) and (7) as
a function of receiver altitude under the assumption rR � rT

for L- (1.575 GHz) and P- (360 MHz) bands for the incidence
angles of 30° and 60°. The results show that the spatial region
expected to contribute to coherent returns grows rapidly with
receiver orbital altitude and approaches 0.6–3 km in diameter
for spaceborne altitudes in the cases shown.

B. Approximation for Incoherent Power

A model describing the incoherent component is also
required in order to determine whether the coherent or inco-
herent terms are dominant. A model given by the bistatic radar
equation shown in (8) is adopted. The coherently integrated
DDM power received due to incoherent scattering from the

surface can be expressed as [20]–[22]

P inc
R (τ, f ) = PT λ

2

(4μ)3

∫
A

GT G Rσ
0�2(τ − τ �)S2( f − f �)

|r T − r |2|r R − r |2 dr

(8)

where P inc
R is the incoherent component of received power at

delay and Doppler offsets τ and f from the specular point,
respectively, σ 0 is the surface normalized bistatic radar cross
section (BRCS), and the (1/R2) terms account for the fall off
of power with range on both the transmit and receive paths.
Finally, the product of the functions � and S accounts for
the ambiguity function of the transmit waveform used; the
convolution over these functions “smears” the contributions
of individual surface points r in the integration into the final
DDM.

All the quantities included inside the integral vary over
earth’s surface and therefore should be included in the integra-
tion. However, for DDM contributions near the specular points
τ ≈ 0 and f ≈ 0, we can further approximate

P inc
R (0, 0) ≈ PT λ

2G R GT

(4μ)3r2
Rr2

T

· σ 0 · Aeff (9)

under the assumption that the ambiguity function limits con-
tributions for this DDM point to within a small vicinity
of the specular point, over which the ranges and antenna
gains do not vary appreciably. This approximation is more
applicable for higher altitude transmitters and receivers due
to the significant variations in angle (and antenna gain)
within the first delay-Doppler region that can occur for lower
altitudes. The approximation is also more applicable as the
signal bandwidth increases, since the resulting smaller sized
delay regions limit the angular variation over their extent.
Further information on the limits of this approximation will
be provided in Sections III and V.

In (9), Aeff represents the effective area on the surface
corresponding to the ambiguity function integrated over the
surface with zero delay and Doppler offset. It can be repre-
sented approximately as two-thirds of the area of an elliptical
shape defined by semi-major and semi-minor axes G1x and
G1y , respectively [26]–[29] that correspond approximately to
the delay and Doppler dimensions

Aeff = 2μ

3
· G1x · G1y = μ

(
G1m

2

)2

. (10)

The final equality defines an “effective” diameter G1m of Aeff
that is proportional to the geometric mean of the semi-major
and semi-minor axes, G1x and G1y , respectively. The semi-
major axis length of the delay ellipse in the scattering plane
for a spherical earth can be found as

G1x = 1

Dx cos θ

√
2c(rRrT )

B(rR + rT )
(11)

where c is the speed of light and B represents the bandwidth of
the transmitted signal. The influence of the Doppler ambiguity
function is dependent on the coherent integration time and
the specific transmitter and receiver velocities. Here, it is
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characterized as producing a semi-minor axis in the y-direction
that is expressed as a multiple of G1x

G1y = T G1x (12)

with T = (Dx/Dy) cos θ in the limit that the delay ambiguity
function entirely determines Aeff. Given the variation of Aeff
with the particular scenario considered, the results to follow
should be taken only as estimates under typical conditions.
Because the goal of this analysis is to obtain basic insights
into the importance of coherent effects, this level of accuracy
is sufficient.

Finally, for incoherent scattering from a rough surface,
the geometrical optics (GO) expression [25] for the specular
NRCS is

σ 0 ≈ |�|2
s2 (13)

where s2 is the low-pass-filtered surface mean square slope
(MSS). For ocean surfaces, the MSS can be expressed as

s2 = 2susc (14)

within which su and sc are the surface rms slopes in the
upwind and crosswind directions, respectively, independent
of the orientation of the scattering plane with respect to
the wind direction [33]. It is noted that the GO expression
provides only a rough approximation for the NRCS at low
winds due to the limited applicability of the GO limit of the
Kirchhoff approximation for regimes other than strong diffuse
scattering [23].

C. Relative Contribution of Coherent Power

Combining (9) and (1), we obtain the ratio K of the coherent
to incoherent power as

K = Pcoh
R /P inc

R

= 3s2
(

B D2
x cos2 θ

cT

)
· rRrT

rR + rT
· Z f · e−4k2

0 h2 cos2 θ

(15)

≈ 3s2 ·
(

B

c

)
· h R · Z f · e−4k2

0 h2 cos2 θ (16)

with the second equation assuming that rT � rR , Dx ≈ 1,
and T = cos θ , and using the receiver height above the
tangent plane at the specular point h R = rR cos θ . The ratio K
approximately accounts for the effects of surface roughness,
frequency, receiver bandwidth, and the scattering geometry on
the relative contribution of the coherent term.

III. APPLICATION TO SPECULAR SCATTERING

FROM THE SEA SURFACE

To examine (16) for the sea surface, information on the
expected rms height and MSS of the sea surface is required.
Given a model of the sea surface power spectral density
ψ(k, ϕ) (as, for example, in [34]), the surface height variance
can be obtained as

h2 =
∫ ∞

2μ
F1m

∫ μ

−μ
ψ(k, ϕ) dϕ k dk. (17)

Fig. 4. L-band (1.575 GHz) CRL for varying wind speeds and receiver
altitudes at incidence angles (a) θ = 30◦ and (b) θ = 60◦ .

The integration over wavenumber would extend from zero to
infinity if the height variance contributions of all sea surface
length scales were included. However, the integration here
includes only wavenumbers corresponding to length scales
smaller than the size of the first Fresnel zone (2μ/F1m). This
is because the height variance is used in (16) to compute
the roughness-induced reduction of the coherent term, which
arises primarily from surface points within the first Fresnel
zone. This assumption is reasonable for scenarios in which it
can be assumed that surface roughness properties are uniform
over large spatial scales (e.g., the sea surface) and would
be less applicable to land scenes in which surface roughness
properties may vary significantly in space.

Figs. 4 and 5 plot the resulting CRL given by (2) of wind
speed and receiver height for the L- (1.575 GHz) and P-
(360 MHz [15], [16]) bands, respectively. Plots for incidence
angles of θ = 30◦ and 60◦ are included in each case. Note that
receiver height enters the computation through its influence
on the Fresnel zone size (see Fig. 3) and therefore on the
surface height variance computation [see (17)]. These figures
illustrate the rapid decrease in the coherent term that occurs as
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Fig. 5. P-band (360 MHz) CRL for varying wind speeds and receiver altitudes
at incidence angles (a) θ = 30◦ and (b) θ = 60◦.

the wind speed (and height variance) increase, as well as the
decreases that occur with receiver height as the Fresnel zone
size and corresponding roughness increases. For the L-band at
θ = 30◦ and receiver heights greater than 100 m, the coherent
term attenuates rapidly with wind speed beyond a wind speed
of approximately 2 m/s. This boundary is extended slightly to
≈3 m/s for the θ = 60◦ case. For lower altitude receivers at
heights 30 m or less, i.e., ground-based applications [36]–[39],
the first Fresnel zone size and surface roughness contained
reduce sufficiently to allow coherence for an extended range
of wind speeds. Results at the P-band are similar, but show
a wider range of wind speeds (up to ≈5–7 m/s for higher
altitude receivers) and receiver heights (up to ≈100 m) for
which coherent returns are expected to be appreciable, due to
the reduced impact of surface roughness on lower frequency
measurements.

While the behavior of the CRL provides some insight into
the relative importance of coherent effects, the full evaluation
of the K -factor requires information on the surface slope
variance described by (14) that impacts the incoherent term.

The required quantities can be expressed in terms of ψ as

s2
u =

∫ k0
3 cos θ

2μ
G1m

∫ μ

−μ
k3 cos2(ϕ) ψ(k, ϕ) dϕ dk (18)

s2
c =

∫ k0
3 cos θ

2μ
G1m

∫ μ

−μ
k3 sin2(ϕ) ψ(k, ϕ) dϕdk (19)

where it is implied that ϕ = 0◦ in the integration is the
upwind direction [34]. In this case, the lower limit of the
integration extends to length scales corresponding to the effec-
tive incoherent scattering area for the near specular portion
of the DDM. The integration upper limit is truncated at
the wavenumber corresponding to the short scale “cutoff”
wavenumber (k0 cos θ)/3 commonly used in the two-scale
theory of sea scattering.

Fig. 6 shows K values obtained using (16) together with
(17)–(19) as a function of wind speed and receiver altitude
for signal bandwidths of 1 MHz at the L-band (the CYGNSS
C/A code) and an assumed 0.5 MHz at the P-band. In this
case, the axes are restricted to regions for which the angular
variation over Aeff is small and for which the surface rms
height within Aeff is sufficient to ensure incoherent scattering.
The figures show results similar in nature to those for the
CRL, although the case of low altitudes is excluded from
the analysis. For the L-band, again wind speeds ≈2–4 m/s
(depending on incidence angle) represent the limit beyond
which incoherent effects should be expected to dominate
observations, while the P-band case shows that coherence can
be important up to wind speeds of 6–7 m/s.

While the approach applied remains approximate, it never-
theless provides insight into the importance of coherence over
the sea surface. It is noted that CYGNSS measurements have
indeed confirmed that coherence can occur for wind speeds
less than approximately 2–3 m/s. It is also noted that in such
conditions, the surface rms height is likely to be significantly
impacted by any contributions from non-local swell that are
not captured by standard models for the sea surface power
spectrum and its dependence on wind speed alone.

IV. SPECULAR SCATTERING OVER LAND

Several studies analyzing land surface specular scattering
from space or airborne measurements [40] have noted the
high variability of land returns. Fig. 7 provides an example of
CYGNSS NRCS measurements within 50 km of the TxSON
measurement site in Texas. The results show an NRCS vari-
ability exceeding 10 dB, with the circled points suggesting
the presence of coherent reflections from the land surface that
are less present at other points in the time series. It is noted
that the small size of F1m compared with G1m can result in a
significant dependence of the returns on the exact location of
the track within the region included in Fig. 7.

Equation (16) can be examined as a function of the surface
rms height to obtain some insight into expectations for land
surface returns. Fig. 8 plots the K -factor as a function of rms
height and incidence angle for a CYGNSS-like measurement
(i.e., 1.575 GHz, 1-MHz bandwidth, and rR ≈ 500 km � rT )
and for a P-band system (360 MHz, 0.5-MHz bandwidth, and
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Fig. 6. Depiction of K -factor at varying receiver altitude and surface wind speeds for (a) L-band at θ = 30◦, (b) L-band at θ = 60◦, (c) P-band at θ = 30◦,
and (d) P-band at θ = 60◦.

similar orbit properties), assuming that s2 = 0.01. For the
L-band, the results show a rapid reduction in the importance
of coherence for surface rms heights greater than 4–8 cm (as
a function of incidence angle) within the first Fresnel zone
region. Similar results are reported in [41], where a surface rms
height of ≈3 cm was reported as the boundary beyond which
coherent returns were not observed. The range of rms heights
for which coherence is expected at the P-band is expanded
by approximately the ratio of the frequencies, but coherence
still decreases even in this case for rms heights greater than
15–30 cm.

While models for the roughness of land surfaces are not
as readily available as in the sea surface case, Fig. 8 makes
clear that terrain rms heights are required to be within a few
cm over regions approximately the size of the first Fresnel
zone, i.e., hundreds of meters, for the example of CYGNSS.
An examination of digital elevation maps over these scales
typically shows rms heights on the order of meters, although
it is noted that the errors in existing digital elevation maps
are large compared to the cm length scales of interest here.
Nevertheless, the requirement for terrain heights to be very flat
over these scales suggests that land surface coherent returns at

the L-band are most likely to arise from inland water bodies
since it is only for such surfaces that rms heights can be
assumed to be at the required levels. The prevalence of coher-
ent returns for P-band spaceborne measurements should be
expected to be greater than that at L-band, but the assumption
that terrain surface rms heights remain within ∼15–30 cm
over ∼1–2-km length scales remains to be validated due to
the impact of earth’s natural topography over such scales. It is
also noted that at the L-band, the penetration depth is limited
to near-surface (≈ top 5-cm layer) depths, while at P-band,
the reflected wave will also be impacted by any sub-surface
layers or volume scattering. Such contributions may further
reduce the coherence of P-band returns. Section V further
examines the properties of coherent returns from inland water
bodies as a function of their boundary shape and any offset
from the specular point.

V. IMPACT OF SMOOTH REGION BOUNDARIES

ON COHERENT RETURNS

Under the physical optics model of scattering from a rough
surface, the electric field scattered from a rough surface has
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Fig. 7. Example of bistatic land returns (NRCS) derived from CYGNSS con-
stellation CYG01-CYG08 operating at L-band over site of interest (TxSON,
TX) within 50-km radius of site location on January 10, 2019. The variability
within a relatively small footprint highlights the impact of the presence of
very flat surfaces corresponding to inland water bodies.

the form

Es = ik0 cos θ

2μ
[(ĥs ĥi
H + v̂s v̂i
v) · êi ]

×
∫

A
d A

e−ik0rtot

|r T − r ||r R − r | (20)

with (ĥs , v̂s) and (ĥi , v̂i ) representing horizontally and ver-
tically polarized unit vectors for the incident and scattered
directions, 
h and 
v are the Fresnel reflection coefficients for
the electric fields, and êi a unit vector representing the inci-
dent wave polarization at the specular point. Also, as shown
in Fig. 2

rtot = |r T − r | + |r R − r | (21)

with

r T = rT (−x̂ sin θ + ẑ cos θ) (22)

r R = rR(x̂ sin θ + ẑ cos θ) (23)

r = ρ(x̂ cosφ + ŷ sin φ)− ẑ
ρ2

2aeff
(24)

= x̂ x + ŷ y − ẑ
ρ2

2aeff
(25)

where the final equation assumes that the spherical earth
surface has no additional roughness. For a spherical earth
surface, the integration over area can be expressed as

d A = dr
1√

1 −
(
ρ

aeff

)2
(26)

where the area A considered extends only over the “smooth”
surface region, e.g., the extent of an inland water body. It is
assumed, in what follows, that ρ � aeff so that the term
in the square root in (26) is approximated as unity, and that
other contributions from earth’s surface are dominated by the
contribution of the smooth surface region.

Fig. 8. K -factor as a function of rms height and incidence angle.
(a) 1.575 GHz. (b) 360 MHz.

Now assuming that ρ � rR and ρ � rT , we can
approximate

rtot ≈ rR + rT

+ρ2
(

rR + rT

2rRrT
[sin2 φ + cos2 θ cos2 φ] + cos θ

aeff

)
(27)

1

|r T − r | ≈ 1

rT

{
1 − ρ

rT
sin θ cosφ

−
(
ρ

rT

)2 1 − 3 sin2 θ cos2 φ + cos θ rT
aeff

2

}

≈ 1

rT
(28)

1

|r R − r | ≈ 1

rR

{
1 + ρ

rR
sin θ cosφ

−
(
ρ

rR

)2 1 − 3 sin2 θ cos2 φ + cos θ rR
aeff

2

}

≈ 1

rR
. (29)

It is noted that the third-order term in ρ in (27) (not shown) is
equal to the second-order correction multiplied by sin θ(x/M1)
when earth curvature is neglected, where M1 is

M1 = rRrT

rT − rR
≈ rR (30)
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with the final form holding for rT � rR . Therefore, higher
order corrections become significant only when the smooth
region considered has dimensions approaching the distance to
the receiver.

Equations (28) and (29) show that it is an acceptable
approximation to neglect the dependence on ρ in the terms in
the denominator of the integrand in (20). However, the effect
of ρ on the phase term must be included as

k0rtot ≈ k0(rR + rT )

+ k0ρ
2
(

rR + rT

2rRrT
[sin2 φ + cos2 θ cos2 φ] + cos θ

aeff

)
(31)

= k0(rR + rT )+ μx2

F2
1x

+ μy2

F2
1y

(32)

with F1x and F1y accounting for earth curvature effects as
defined in (6) and (7).

The integral now has the form

Es = ik0 cos θe−ik0 (rR+rT )

2μrRrT
[(ĥs ĥi
H + v̂s v̂i
v) · êi ]

×
∫

A
dr exp

(
−i
μx2

F2
1x

)
exp

(
−i
μy2

F2
1y

)
. (33)

A. Smooth Region That Includes the Specular Point

If the substitution x � = √
μx/F1x and y � = √

μ y/F1y

is now made [note this remaps the original smooth region
boundaries into the (x �, y �) space], we obtain

Es = ik0 cos θe−ik0 (rR+rT )

2μrRrT
[(ĥs ĥi
H + v̂s v̂i
v) · êi ]

× F1x F1y

μ

∫
A�

dr � exp(−iρ�2) (34)

Es = ie−ik0(rR+rT )

μ(rR + rT )Dx Dy
[(ĥs ĥi
H + v̂s v̂i
v) · êi ]

×
∫

A�
dr � exp(−iρ�2) (35)

= Z f E f riis (36)

where the electric field under the Friis formula for a spherical
earth is

E f riis = e−ik0 (rR+rT )

Dx Dy(rR + rT )
[(ĥs ĥi
H + v̂s v̂i
v) · êi ].

Here

Z f = i

μ

∫
A�

dρ�dφ�ρ� exp(−iρ�2) (37)

represents the ratio of the reflected field to that assumed under
an infinite spherical flat surface reflection. The expression for
E friis accounts for the reduction in the reflection coefficient
caused by earth curvature (through the terms Dx and Dy),
while Z f accounts for impact of the smooth region boundaries
through the integration over A�. If the further substitution
q = ρ�2 is made, Z f becomes

Z f = i

2μ

∫
A��

dqdφ� exp(−iq) (38)

= 1 − 1

2μ

∫ 2μ

0
dφ� exp

(− iρ�2
max(φ

�)
)
. (39)

It is assumed, in the final expression, that the specular point
lies within the smooth surface region, and that the boundary of
the smooth surface region can be expressed as ρ� = ρ�

max(φ
�).

This expression makes clear that Z f is highly dependent on
the boundary shape of the smooth surface region, since it
takes the form of a difference between one and an average
of equal amplitude phase terms evaluated on the region
boundary. For the case of an elliptical disk smooth region
ρ�

max(φ
�) = Rmax(

√
μ/F1y), Z f further simplifies to

Z f,disk =
(

1 − exp

(
−iμ

(
Rmax

F1y

)2
))

(40)

which again shows the oscillatory properties of Z f in that the
field amplitude can range from zero to approximately twice
that predicted by the Friis formula.

For arbitrarily shaped smooth surface regions containing the
specular point that are small compared to the Fresnel zone
size, the exponential argument inside the integral of (39) can
be expanded with the result

Z f ≈ i

2μ

∫ 2μ

0
dφ�ρ�2

max(φ
�) (41)

= i A

F1x F1y
(42)

so that, in the limit of small smooth surface area, the field is
proportional to the ratio of the smooth region and Fresnel zone
areas. The resulting coherent power is then proportional to the
smooth region area squared, so that a rapid increase should be
expected with water body size for small water bodies.

B. Rectangular Smooth Surface Region

For the particular case of a rectangular smooth surface
region existing between coordinates X1 and X2 along x and
coordinates Y1 and Y2 along y (as shown in Fig. 2), Z f can
be expressed in terms of Fresnel integrals as

Z f,rect = i

2
Q

(√
2x

F1x

)∣∣∣∣∣
X2

X1

Q

(√
2y

F1y

)∣∣∣∣∣
Y2

Y1

(43)

where the | notation refers to the difference of the Q function
evaluated for x or y, respectively, at the upper and lower limits
indicated. Here

Q(z) = C(z)− i S(z) =
∫ z

0
dt e−i μ t2

2 (44)

≈ z (45)

≈ e−i μ4√
2

(
1 − √

2e
−i μ2

(
z2− 1

2

)
z

1 + iμz2 − 2
5+iμz2

)

(46)

with C(z) and S(z) being the Fresnel integrals and the
final two equations holding in the small and large z lim-
its, respectively. If the small argument form is applied
in (43), (42) is again obtained. For larger size smooth regions,
the large argument form shows an oscillatory behavior in
z (i.e., smooth region boundary location) that approaches
unity with an oscillation amplitude that decays eventually
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Fig. 9. Coherent power relative to Friis formula for a square smooth region
as a function of the square region size with respect to F1, for θ = 30◦.

as (1/z). For a rectangular smooth surface region centered
on the specular point (so that X1 = −H/2 = −X2 and
Y1 = −W/2 = −Y2 with H and W the height and width of the
rectangle), the values of Q evaluated at the boundary limits are
equal and opposite, and Z f,rect is proportional to the product
of (46) evaluated with z = (H/

√
2F1x) and z = (W/

√
2F1y).

Fig. 9 shows the amplitude of Z f,rect as a function of the
size of a square region centered on the specular point for a
CYGNSS like observation at θ = 30◦. Curves are included
for the cases in which earth curvature is included or neglected,
with the results showing that earth curvature can make a small
but appreciable impact particularly on the oscillatory pattern
observed [note the horizontal axis is scaled in both the cases
in terms of the Fresnel zone size neglecting earth curvature
from (3)]. The results show the rapid increase in received
power as the smooth region size increases [as predicted
in (42)], followed by the oscillatory pattern versus boundary
size for which the oscillations decay with F1x/H and F1y/W .
While the oscillatory pattern is not as dramatic as that for the
elliptical disk, the fluctuations observed nevertheless highlight
the sensitivity of coherent reflections to the specific shape of
the smooth region encountered. Results were also compared
between the complete evaluation of (20) and the approximated
version (43) and found to be indistinguishable.

Finally, (43) is applied to the case of a rectangular region
shifted from the specular point, e.g., X1 = xc − H/2,
X2 = xc + H/2, Y1 = yc − W/2, and Y2 = yc + W/2. For
a rectangle with a small height (H ) and width (W ) compared
to the respective Fresnel zone sizes, it can be shown for small
(xc, yc) that the resulting field still follows (42) but with a
phase shift corresponding to the modified smooth region center
location. Alternately, for smooth region boundaries that are
shifted significantly away from the specular point in terms of
the Fresnel zone dimensions, the approximation

Q(z+
)− Q(z−
) ≈ 2

μ
e−i μ2 (z

2+
2)

√
z2 +
2

z2 −
2

× (cosα sin β − i sin α cosβ) (47)

cosα = z√
z2 +
2

(48)

β = μx
 (49)

Fig. 10. Coherent power relative to Friis formula for a square smooth region
of side length F1 as a function of the center region offset from the specular
point, for θ = 30◦ .

can be developed from (46). For center offsets that are large
compared to the smooth region dimensions, α will be small
and the second term in the parenthesis can be neglected except
for cases when sin β approaches zero. This approximation
makes clear that oscillatory behaviors are still obtained as
a function of either smooth region offset or smooth region
size and that the amplitude of the coherent field decays
approximately as one over the center offset normalized by the
corresponding Fresnel zone size.

Fig. 10 shows the amplitude of Z f,rect for a smooth region
of size F1 by F1 as a function of the center offset in x and
y from the specular point, for θ = 30◦ and a CYGNSS-like
geometry. The results show the expected oscillations as well as
the reduction in amplitude of the coherent field as the smooth
region center is moved from the specular point. Again, these
results highlight the significant variability that can occur in
coherent fields as a function of their precise shape and location
with respect to the specular point.

VI. CONCLUSION

The model presented in this article provides a simple
methodology for assessing the expected importance of coher-
ent contributions for both land and ocean surfaces. This is
described as a function of frequency, bandwidth, observing
geometry, and surface properties. Application of the model to
the L- and P-band examples showed that coherent contribu-
tions over sea surfaces should occur infrequently at the L-band
and at the P-band (360 MHz) up to wind speeds of 6–8 m/s.
An analysis of land surface returns at the L-band showed
that inland water bodies are likely to be the primary factor
producing coherent returns over land. This is due to the small
rms heights that are required over length scales up to hundreds
of meters in order to retain coherence. The prevalence of
coherent returns for P-band spaceborne observations should
be greater, but terrain surfaces with rms heights less than
approximately 15–30 cm will still be required over length
scales of ∼1–2 km on earth’s surface. The analysis presented
for coherent returns from inland water bodies showed the
significant variability that should be expected as a function
of smooth region shape and offset from the specular point.
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Such returns are also influenced by any small-scale rough-
ness on the smooth region surface, adding further variability.
Attempts to use the amplitudes of coherent GNSS-R returns to
retrieve properties of inland water bodies will therefore need
to account for these effects.
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