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space can be achieved 
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Abstract 

Using the first full annual cycle of Cyclone Global Navigation Satellite System 

(CyGNSS) observations, we investigated the limitations and capabilities of CyGNSS 

observations for soil moisture (SM) estimates (0-5 cm). A relative signal-to-noise ratio (rSNR) 

value from a CyGNSS-derived delay-Doppler map is introduced to improve the temporal 

resolution of SM derived from Soil Moisture Active Passive (SMAP) data. We then evaluated 

the CyGNSS-derived rSNR using ground-based SM measurements and the triple collocation 

method with SMAP and modeled SM products. We found that CyGNSS can provide useful 

SM estimates over moderately vegetated regions (correlation coefficient of the individual data 

(Ri): 0.77) but shows degraded performance over arid and densely vegetated regions (Ri: 0.68 

and 0.67). However, when rSNR data is combined with SM data from SMAP, daily SM 

estimates can be achieved. These results show that synergistic use of CyGNSS observations 

can improve on SM estimates from current satellite systems. 

 

Keywords: surface soil moisture, CyGNSS, Global Navigation Satellite Systems 

Reflectometry (GNSS-R), SMAP, triple collocation, signal-to-noise ratio (SNR) 
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1 Introduction 

Over the last several decades, researchers have proposed various methods for 

estimating near-surface soil moisture (SM) values via satellite microwave instruments 

(Karthikeyan et al., 2017). This work is critical since SM estimates at regional scales are 

necessary for operational applications such as water resource and irrigation management, near-

real-time numerical weather prediction, hydrological modeling, and many other surface 

processes (Seneviratne et al., 2010; Brocca et al., 2017). In particular, the active and passive 

satellite-based microwave SM estimation missions, including Soil Moisture and Ocean Salinity 

(SMOS) and Soil Moisture Active Passive (SMAP), have provided global-scale SM estimates 

(Entekhabi et al., 2010; Kerr et al., 2010). 

In addition to satellite-based microwave SM estimation missions, researchers have also 

tested the viability of surface-reflected Global Navigation Satellite System (GNSS) signals in 

estimating surface SM (Masters, 2004; Camps et al., 2016). The first dedicated space-borne 

Global Positioning System (GPS) reflectometry (GPS-R) receiver on board the UK-Disaster 

Monitoring Constellation satellite (also known as BNSCSAT-1, launched in September 2003) 

proved that GNSS signals can reliably describe surface conditions including ocean, snow, and 

land surface properties (Gleason et al., 2005). GNSS is an umbrella term for satellite navigation 

systems, encompassing all global satellite positioning systems that provide autonomous geo-

spatial positioning; thus, the GPS is one component of GNSS and GPS is now the most widely 

used GNSS in the world. 

The major operational distinction between the GPS-R receiver and the active/passive 

microwave system is the source of the signals each uses to observe the earth’s surface. While 

a passive sensor observes emissions coming from objects on Earth, an active sensor, also called 

radar, actively emits microwaves toward the earth’s surface and observes the reflected signal. 
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The GPS-R receivers on board CyGNSS are passive sensors that receive surface-reflected GPS 

signals. In other words, the GPS-R receivers on board CyGNSS observe signals of opportunity 

from GNSS. The term signals of opportunity refers to the signals which enable CyGNSS to 

observe the earth’s surface; that is, CyGNSS uses its GPS-R receivers to take advantage of 

signals from existing transmitter systems (i.e., GPS satellites) intended to observe objects on 

Earth. 

Chew et al. (2016) and Camps et al. (2016) demonstrated the sensitivity of the GPS-R 

dataset on SM and vegetation cover using data from the UK TechDemoSat-1 (TDS-1), which 

was launched in July 2014. However, TDS-1-dervied data has important limitations in data 

acquisition, both spatially and temporally, because the TDS-1 GPS-R payload is only active 

for two out of every eight days (Clarizia et al., 2016). This limitation prevents us from 

estimating SM values with TDS-1 in a timely manner, as we cannot obtain sufficient datasets 

for daily SM variability. Lack of access to daily SM variability can produce a substantial bias 

in simulated surface water and energy fluxes, infiltration and surface runoff, etc. (Crow and 

Wood, 2002). 

Researchers expected to overcome this crucial limitation with NASA’s new weather 

prediction project, the Cyclone Global Navigation Satellite System (CyGNSS). In December 

2016, eight CyGNSS micro-satellites were launched from a single launch vehicle. CyGNSS 

was designed to measure ocean surface wind field using a bistatic scatterometer technique with 

GPS-R receivers (Ruf et al., 2016a; Ruf et al., 2018). Each micro-satellite has four GPS-R 

receivers which function as delay-Doppler mapping instruments. A delay-Doppler map (DDM) 

is a 2-D image generated by diffuse scatter power from the earth’s surface in the surroundings 

of the specular point. Consequently, the CyGNSS constellation generates 32 simultaneous 

DDMs per second (Clarizia & Ruf, 2016). 
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The most important feature of CyGNSS’s observations is that in contrast to other well-

known microwave-based SM retrieval satellite systems in sun-synchronous orbit (SSO) such 

as SMAP, SMOS, MetOp-A and B, and GCOM-W1, all of which have revisiting times of one 

to three days, the CyGNSS micro-satellites randomly receive surface-reflected GPS signals 

with revisiting times of 2.8 (median) and 7.2 (mean) hours per day (Ruf et al., 2016b). Utilizing 

this unprecedentedly high temporal resolution data could add significant value to existing 

microwave-based satellite SM retrieval systems. For example, a spatial and temporal gap of 

one to three days in a certain region in SMAP SM data could be filled with CyGNSS-derived 

SM information. Consequently, predictions of vast-scale water-related natural disasters could 

be improved since antecedent soil moisture information at lead times of less than one to three 

days  is necessary to predict most water-related hazards (Brocca et al., 2017; Kim et al., 2017). 

Therefore, information on daily SM variability from space would contribute to improved 

prediction capabilities of natural disasters. Figure S1 shows an example of the sampling 

frequencies of CyGNSS and SMAP over part of the contiguous United States (CONUS) area. 

The CyGNSS observation shows a clear potential to fill the gap in SSO satellite observations 

and to make continuous SM estimates possible. 

 In the present study, we used the first full annual cycle of CyGNSS-derived signal-to-

noise ratio (SNR) observations to investigate the sensitivity of SNR to SM variability over the 

CONUS area (from March 2017 to March 2018). The overall objectives of our study are as 

follows: 1) to illustrate the possibility of retrieving SM by using the surface-reflected GNSS 

signals, 2) to evaluate the relationship between CyGNSS-derived SNR and SM using in-situ 

SM measurements in relation to different vegetation conditions, 3) to apply the CyGNSS-

derived SNR in improving the frequency of SM sampling with SMAP data, and 4) to 

investigate the error patterns of CyGNSS-derived SNR using triple collocation (TC) analysis 

considering vegetation and land use effects. We believe that this research can provide novel 
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insight into the use of the recently available CyGNSS dataset in practical applications and data 

merging processes to better understand surface hydrologic cycles, while we acknowledge 

limitations in SM estimates from CyGNSS observations. 
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2 Datasets 

In this study, we utilized five different satellite datasets: 1) Level 0 CyGNSS products, 

2) Half-hourly Global Precipitation Measurement (GPM) with 0.1° spatial resolution from late-

run Integrated Multi-satellitE Retrievals for GPM (IMERG) products Version 4 (Skofronick-

Jackson et al., 2017), 3) Half-orbit SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-

Grid SM and 4) Vegetation Water Content (VWC) Version 1 (Chan et al., 2018), and 5) the 

IGBP Land Cover Types Classification from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensors (Friedl et al., 2002). We also used 1) SM (0-10 cm) and 

2) surface temperature (0-10 cm) from hourly NLDAS-2 with 0.125° spatial resolution (Xia et 

al., 2012). For the ground-based SM estimates, we employed hourly in-situ SM estimates from 

the International Soil Moisture Network (ISMN) (Dorigo et al., 2011). All datasets are masked 

out when the surface temperature is below zero. A detailed description of the CyGNSS dataset 

is provided below. 

 

3 Methodology 

3.1 CyGNSS-derived SNR values 

The frequency transmitted from GPS satellites is a microwave band (L1-band, 𝜆~19cm) 

with a reflected electromagnetic wave capable of conveying information about how much 

moisture exists in surface soil (Schmugge, 1986; Ulaby et al., 2014). The DDM generated from 

signals of opportunity from GNSS are known to have a direct relationship with surface SM 

dynamics (Voronovich and Zavorotny 2017). Each DDM is characterized by the scattering 

geometry (i.e., incidence and scattering angles), antenna gains, distance, and dielectric and 

statistical properties of the surface (Alonso-Arroyo et al., 2016). 
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In general, the scattering pattern of the land surface consists of both coherent and 

noncoherent components; thus, the DDM (defined as  |𝑌(𝜏̂, 𝑓̂)|2)  general expression is 

composed of two terms:  

|Y(τ̂, f̂)|
2

= |Ycoh(τ̂, f̂)|
2

+ |Yncoh(τ̂, f̂)|
2

  Eq. (1) 

where 𝜏̂ is a relative time delay and 𝑓 is a Doppler frequency. In the present study, we assumed 

a homogenous, smooth land surface with different incidence angles. This means that we 

assumed that much of the signal originates from coherent reflections and ignored incoherent 

reflections because strong coherent scattering of GNSS signals has been shown over land 

(Carreno-Luengo et al., 2016). For the coherent component contribution part of the signal, the 

DDM can be expressed based on the Friis transmission formula and the Fresnel reflection 

coefficient of the equivalent smooth surface at 𝜏̂ and 𝑓 bin as follows (Ulaby et al., 2014; 

Voronovich and Zavorotny 2017): 

|Ycoh(τ̂, f̂)|
2

=
Pr

Tλ2 

(4π)
∙ 〈|χ(τ̂, f̂)|

2
〉 ∙

120πG(τ̂,f̂)
T , G(τ̂,f̂)

R

(4π)2
∙

|V̅(τ̂, f̂)|
2

(R
(τ̂,f̂)
R + R

(τ̂,f̂)
T )

2    Eq. (2) 

where 𝑃𝑟
𝑇  is the transmitted Right Hand Circular Polarization (RHCP) power,  𝜆  is the 

wavelength (~19 cm) of the L1-band, 𝜒 is the Woodward Ambiguity Function (WAF), 𝐺̅(𝜏̂,𝑓̂)
𝑇  

and 𝐺(𝜏̂,𝑓̂)
𝑅  are the transmitter and the receiver antenna gains, 𝑉̅(𝜏̂, 𝑓) is an average reflection 

coefficient, and 𝑅(𝜏̂,𝑓̂)
𝑇  and 𝑅(𝜏̂,𝑓̂)

𝑅  are the transmitter-to-surface and surface-to-receiver range 

losses.  

Over land surface, the variability of 𝑉(𝜏̂, 𝑓), the reflection coefficient, is a function of 

soil wetness conditions and incidence angle (θi). In a natural land surface, the probability 

density function (PDF) of measured height of the ground surface is well modeled by a Gaussian 
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distribution. Under the method of the Kirchoff approximation,  𝑉(𝜏̂, 𝑓) can be expressed with 

the Fresnel reflection coefficient and incidence angle as follows (Davies, 1954): 

VF(τ̂,f̂)(s, θi, ε) = exp−4Ψ(s,θi)2
∙  |Rrl(ε, θi)|2   Eq(3) 

𝑅𝑟𝑙(𝜀, 𝜃𝑖)  is a combination of vertical and horizontal polarization Fresnel reflection 

coefficients, which is a function of the dielectric constant of the land surface (𝜀) and the 

incidence angle (θi) (Zavorotny & Voronovich, 2000): 

Rrl(ε, θi) =
Rvv(θi) − Rhh(θi)

2
=

(ε − 1)√ε − sin2 θi

(ε cos θi + √ε − sin2 θi)(cos θi + √ε − sin2 θi)
  Eq. (4) 

Ψ is function of surface rms height (s) and the incidence angle (θi) as follows (Ulaby et al., 

2014): 

Ψ =
2π

λ
s cos θi  Eq. (5) 

The large difference in 𝜀 is the basis for estimating SM when a signal is sensitive to 𝜀. The 𝜀 

of dry and wet soil is approximately 3 and 25 respectively, and the electromagnetic roughness 

in Eq. (4) (i.e., 
2𝜋

𝜆
𝑠) for the smooth and rough surfaces is approximately 0.2 and 0.5~1.94 (De 

Roo & Ulaby,1994). Figure S2 shows how CyGNSS-derived reflection coefficient values can 

relate to the dielectric constant and consequently can be applied to soil wetness estimations. 

This illustrates the simulated reflection coefficient values 𝑉(𝜏̂, 𝑓) with respect to different SM 

conditions for four different surface roughness values and different incidence angles; as SM 

increases, the reflection coefficient increases. Based on Figure S2 and the equations (3) to (5), 

we see that CyGNSS-retrieved |𝑌𝑐𝑜ℎ(𝜏̂, 𝑓)|
2
 can potentially detect surface SM variability with 

respect to different θi  and s. This CyGNSS-derived |𝑌𝑐𝑜ℎ(𝜏̂, 𝑓)|
2

can be directly described 

using the SNR of the scattered signal--the ratio of the CyGNSS-observed reflect peaks of 
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|𝑌(𝜏̂, 𝑓)|
2

to the direct peaks of |𝑌(𝜏̂, 𝑓)|
2

 power waveforms. A detailed calculation of 

compensation for the noise power floor and the antenna gains used to calculate SNR can be 

found in the CyGNSS handbook (Ruf et al., 2016b). In order to compare SNR with SMAP and 

NLDAS-2 datasets, we re-projected SNR observations into 9 km EASE-Grid cells of 

equivalently-sized enhanced SMAP grid projections and assumed each grid cell to be 

homogenous.  

As shown in Figure S2, the strong variability of the reflection coefficient with the 

incidence angle θi  may be a fundamental problem when SNR data is applied to SM estimates. 

For example, a lower θi reflected GNSS signal is related to a lower reflection coefficient value 

(different line colors) over similar surface wetness and roughness conditions. This indicates 

that SNR data from different θi cannot simply be averaged out when more than one SNR value 

observed from different θi exists in an intra-grid cell. Considering these issues, we propose a 

method for the normalization of the SNR value with respect to the reference incidence angle. 

All SNR values from various θi at (xi, yi) pixels (hereafter SNR(xi, yi, θi)) are normalized at 

SNR values associated to θi range [35°  5°] within the same pixel (hereafter SNRref(xi, yi)). A 

normalized SNR(θi) value at (xi, yi) pixel (hereafter nSNR(xi, yi, θi) can be obtained using 

equation (6) as follows: 

nSNR(xi, yi, θi) =
(SNR(xi, yi, θi) − μ(SNR(xi, yi, [θi ± 5°]) ) × σ(SNRref(xi, yi)) 

σ(SNR(xi, yi, [θi ± 5°]) 

+ μ(SNRref(xi, yi))  Eq. (6) 

where the μ represents the average over time and the sigma is the standard deviation of SNR 

datasets during the study period. This normalization process enables us to fully utilize SNR 

values from different incidence angles by matching the standard deviation of SNR data from 

various incidence angles to the reference angle’s SNR dataset. 
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In this study, we employed a procedure and two important assumptions similar to 

Wagner et al. (1999a, 1999b) in order to derive the relative moisture content in the topsoil (0-

5 cm). The criteria for the relative values were the historically collected maximum and 

minimum values of moisture content in the top soil layer (0-5 cm). First, we assumed that the 

maximum (nSNRwet) and minimum (nSNRdry) values of nSNR had been obtained within a full 

year of CyGNSS observations because the temporal resolution of CyGNSS is sufficient to catch 

most rainfall events. Thus, we were likely to encounter the conditions of maximum and 

minimum values of nSNR during the time series. Second, we assumed a linear relationship 

between the surface SM contents and nSNR. Wagner et al. (1999c) assumed that the 

backscattering coefficient was linearly related to the surface SM content in the presence of 

vegetation, referencing Dobson and Ulaby (1986); they found that the backscattering 

coefficient is linearly related to the surface SM content over bare soil. However, no previous 

research has been conducted to show the linear relationship between CyGNSS-derived nSNR 

values and SM contents. Therefore, we compared nSNR values with ground-based SM 

measurements to determine if such a linear relationship should exist. Figure S3 shows six 

specific sites with six different vegetation conditions and four land cover types 

(Cropland/Natural, Cropland, Open Shrublands, and Grass lands). Based on Figure S3, we 

assumed a linear relationship between nSNR and the volumetric SM because we found them 

to be linearly dependent on ground-based SM measurements and to have linear correlation 

coefficient values between 0.58-0.73. We calculated the relative value of nSNR (hereafter 

rSNR) using the following equation (7): 

rSNR(xi, yi, 𝑡) =
nSNR(xi, yi, 𝑡) − nSNRdry(xi, yi)

nSNRwet(xi, yi) − nSNRdry(xi, yi)
   Eq. (7) 

where the xi and yi are a location of 9 km EASE-Grid projection at time t and  is the soil 

porosity. The rSNR value can vary from 0 to 1, where 1 indicates all soil pores are filled with 
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liquid water and 0 indicates the SM content to be at or near the wilting point. We embrace the 

same hypothesis as Wagner et al. (1999c), that rSNR is equal to the degree of saturation in the 

top layers of the soil: the degree of saturation is the ratio of the volume of water contained in 

the soil and the volume of pores. Using this rationale as a base, we can obtain the volumetric 

SM by multiplying the rSNR value with the soil porosity value. In this study, we calculated the 

porosity values by applying the equations of Saxton and Rawls (2006) based on soil texture 

characteristics from the Harmonized World Soil Database. 

 

 3.2 Validation methodologies and statistical metrics 

The CyGNSS rSNR and SMAP SM data were evaluated against point-scale ground-

based SM estimates. We calculated the Pearson correlation coefficient (R) values and only 

considered the values at p < 0.05. However, this conventional statistical indicator, R-value, has 

four major limitations in validating satellite-based data against in-situ observations: (1) a 

measurement depth discrepancy occurs between the CyGNSS-derived reflectivity and in-situ 

sensors; (2) the in-situ observations cannot be considered as the true values since in-situ 

observations can have their own measurement uncertainty; (3) the in-situ observations are 

sparsely located, so they provide only limited regional satellite-derived data performance; and 

(4) the two pairs of datasets being compared represent quite different levels of spatial resolution 

(e.g., areal average value vs. point-scale value) (Dorigo et al., 2015; Zohaib et al., 2017). 

In order to evaluate rSNR against ground-based SM estimates, we applied an 

exponential filter to rSNR values because the CyGNSS-derived reflectivity originates from the 

topsoil layer (0-5 cm), while in-situ SM sensors are installed at a certain depth below the 

surface (~10 cm). The exponential filter allows us to overcome the depth discrepancy between 

rSNR and ground-based measurements by estimating the average rSNR value over a layer in 
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the soil profile, also called the Soil Water Index (SWI). We calculated SWI from rSNR 

(hereafter rSNRSWI) using the following recursive equation proposed by Albergel et al. (2008): 

rSNRSWI𝑛
= rSNRSWI(𝑛−1) + 𝐾𝑛 (rSNRSWI(𝑡𝑛) − rSNRSWI(n−1)

)  Eq. (8) 

where rSNRSWI(𝑛−1)  is the estimated profile rSNR at a time t(n-1), and rSNRSWI(𝑡𝑛) is the 

estimated profile rSNR at a time tn. The recursive form of gain Kn at a time tn is calculated by 

Eq. (9): 

𝐾𝑛 =
𝐾(𝑛−1)

𝐾(𝑛−1) + 𝑒
−(

𝑡𝑛−𝑡(𝑛−1)

𝑇
)

 Eq. (9) 

 

where T represents the characteristic time length in days. In previous studies, an optimum T 

(Topt) value approach was proposed based on the Nash-Sutcliffe score to match the profile SM 

values at each in-situ station. In the present study, we also employed Topt to match the depth of 

satellite- and ground-based SM data at each in-situ station. To initialize the exponential 

filter, rSNRSWI1
 was set to rSNR(t1) and K1 was set to 1, following Albergel et al. (2008). The 

range of the gain K is [0, 1]. Similarly, we calculated SWI from SMAP SM (hereafter SMAP 

SMSWI). For details about estimating the profile SM, please refer to Houser et al. (1998) and 

Walker et al. (2001).  

Furthermore, we employed the TC method to evaluate large-scale rSNR values because 

the TC method does not require additional reference values as conventional metrics (Gruber et 

al., 2016). The TC method can address limitation (2) through (4), which we mentioned above. 

TC assumes independent errors, so we selected SM products with derivations as distinct as 

possible to avoid the chance of similarly retrieved SM values having partially correlated errors. 

That is, we calculated the TC-based R-value (Ri) with a triplet including radiometer-based SM 

and model-based SM products along with CyGNSS rSNR data. 
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3.3 Combined CyGNSS rSNR and SMAP SM 

We combined CyGNSS rSNR and SMAP SM products to take advantage of the high 

sampling frequency (day-1) of CyGNSS observations. To combine these two datasets, we 

needed to reconcile the systematic differences between SMAP SM and rSNR. These systematic 

differences between rSNRSWI and SMAP SMSWI can be removed through the normalization of 

rSNRSWI (hearafter rSNRnorm) against a SMAP SMSWI (Draper et al., 2009). We combined two  

datasets (hearafter cSM) after removing their systematic differences with the following Eq. 

(10): 

cSM(xi, yi) =
rSNRnorm(xi, yi) + SMAP SMSWI(xi, yi)

2

=

[(rSNRSWI(xi, yi) − μrSNRSWI
) ×

σSMAP SMSWI

σrSNRSWI
+ μSMAP SMSWI

] + SMAP SMSWI(xi, yi)

2
  Eq. (10) 

where μ represents the mean and σ is the standard deviation of the datasets over time during 

the study period at (xi, yi) pixel. 

 

4 Results and Discussion 

4.1 Sensitivity of rSNR to soil moisture and precipitation 

 Figures 1(a) and (b) show the time-averaged values of rSNR and SMAP SM with the 

longitudinal zonal mean value. The overall time-averaged values of the western CONUS area’s 

rSNR and SMAP SM are relatively low when compared to the eastern CONUS areas. These 

rSNR and SMAP SM patterns correlate well with the spatial patterns of yearly average 

precipitation amounts. In Figure 1(c), we only showed CyGNSS observations under ~37°N 
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since CyGNSS cannot observe latitudes higher than ~37°N. After the quality control processes, 

we lost a great deal of SMAP SM data over eastern CONUS; thus, it was difficult to make a 

spatial comparison analysis between CyGNSS rSNR and SMAP SM in some eastern CONUS 

areas. Most of the data from these areas were masked out because of mountainous terrains and 

dense vegetation areas since microwaves cannot penetrate high vegetation mass. These 

limitations also seem to cause erroneously low rSNR, possibly due to decreasing coherent 

scattering signals from densly vegeated surfaces. For example, we can see the erroneous values 

of rSNR by comparing maps of the average value of rSNR and GPM-derived precipitation. In 

Figure 1(e), the average amount of precipitation over the southeast parts of CONUS is 

relatively high when compared to other areas. However, in Figure 1(a), rSNR values over these 

areas showed low values of rSNR, as in other low-precipitation areas. In addition, the blue 

pixels or red pixels in Figure 1(f) represent areas where CyGNSS or SMAP show a higher 

sampling frequency; thus, some parts of CONUS are missing SMAP SM estimates but 

CyGNSS observations are still present. While this result shows a potential for CyGNSS to gap-

fill missing SM values from other SM satellite missions, current rSNR values over some areas 

may have low data quality; thus, future studies will need to develop a masking process to define 

low-quality data in order to accurately estimate SM contents. 

The time series of rSNRSWI (red dots), SMAP SMSWI (green squares), and cSM (blue 

stars), as well as the in-situ SM (grey lines), are given in Figures 2(a), (b), and (c) for 

representative pixels with different vegetation conditions: low (VWC ≤1), moderate (1 ≤ 

VWC < 3), and high (VWC ≥ 3). Figure S4 shows their locations in CONUS areas with the 

yearly average map of VWC. The in-situ observations in Figures 2(a), (b), and (c) were 

selected to provide an example of the time series of rSNRSWI values for different vegetation 

conditions: R-values of rSNRSWI against the in-situ observation are 0.65, 0.75, and 0.41 for 
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low, moderate, and high VWC, respectively. The rSNRSWI values respond to rainfall events 

showing peak values around rainfall days, and the rSNRSWI values show similar drying-down 

patterns with both the in-situ and SMAP SMSWI values. Areas with erroneous responses of 

rSNRSWI to rainfall events might be caused by spatial resolution mismatch and/or the difference 

in data acquisition time between the in-situ and CyGNSS overpass times. For example, in 

Figures 2(a) and 2(b), compared to in-situ SM values (green lines), the rSNRSWI (red dots) 

overestimates SM values from October to November 2017 in Figure 2(a) and from February 

to March 2018 in Figure 2(b). In especially highly vegetated areas, rSNRSWI showed 

underestimation of SM patterns during the vegetation growing season (from July to October in 

Figure 2(c)). 

The results of the average R-values and sampling frequency (day-1) for CyGNSS 

rSNRSWI and SMAP SMSWI, and for cSM against the in-situ SM, are shown in Table S1. In 

terms of average R-value, SMAP showed better performance than CyGNSS. It has been proven 

that L-band radiometry provides better sensitivity to SM than other instruments (Kerr et al., 

2010). However, SMAP has a lower sampling frequency than CyGNSS, indicating that 

CyGNSS-derived rSNR has the potential to fill the temporal gap in SMAP SM estimates. When 

CyGNSS and SMAP are combined, the average R-values are 0.62 with a revisiting time of 

more than once per day (f > 1 day-1). The results of the combined product’s R-values and a 

sampling frequency of more than once per day are very encouraging. These results show a 

strong potential for the synergistic use of CyGNSS data with passive or active sensor-based 

SM data; together, they can improve both the spatial and temporal resolution of SM retrievals. 

 

4.2 Error pattern estimation from TC statistics 



 

© 2018 American Geophysical Union. All rights reserved. 

Since vegetation is one of the most important parameters to be considered in the SM 

retrieval algorithm, we evaluated the performance of SM estimation from rSNR using the TC 

metrics with regard to various ranges of VWC values. Figure 3(a) shows a map of the Ri-value 

of rSNR. The Ri-value is was proposed by McColl et al. (2014) as a means to investigate the 

linear correlation coefficient of the individual datasets. The average Ri-values are 0.68, 0.77, 

and 0.67 over the low, moderate, and high vegetation conditions, respectively. We observed 

better performance of rSNR over moderately vegetated areas than over sparsely and densely 

vegetated regions. The major land types of moderately vegetated pixels are grasslands and 

croplands (the middle pie chart in Figure 3(b)). The cropland-type regions might be an 

appropriate environmental condition for microwave-based SM retrievals from CyGNSS 

signals, e.g., other radiometer sensors (Al-Yaari et al., 2014). In Figure 3(c), over croplands 

(yellow circle; IGBP code 12 in Figure 3(b)), CyGNSS showed the highest Ri-value among 

land classification types. This result suggests a potential application of CyGNSS observations 

in agricultural monitoring.  

On the other hand, in Figure 3(c), the lowest Ri-values were found over Evergreen 

Needleleaf Forest (IGBP code 1) and Barren or Sparsely Vegetated regions (IGBP code 16). 

The average value of VOD for Evergreen Needleleaf pixels is 5.66 kg/m3 (densely vegetated), 

and the average value of VOD for Barren or Sparsely Vegetated pixels is 0.09 kg/m3 (sparsely 

vegetated). There are several possible error sources for low Ri-value results in these densely 

and sparsely vegetated regions. 

Firstly, the signal reflected from the dry surface originates from deeper layers of soil, 

causing significant problems in the SM retrieved from microwave-band instruments over arid 

regions (Holmes et al., 2006). Under extremely dry conditions, a low-frequency microwave 

signal penetrates more deeply into the soil layer. Decreasing the SM content leads to an 

exponential-like increase in penetration depth (Ulaby et al., 2014). For example, a GPS signal 
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with a wavelength of 0.19 m can penetrate more than 1 m of dry soil. This deeply penetrating 

signal causes volume scattering by subsurface discontinuities such as rock surface or frozen 

soil beneath shallow soil (Wagner et al., 2013); thus, significant problems can arise when SM 

is retrieved from passive and active microwave-band instruments (Kim et al., 2018). Secondly, 

these dry regions have relatively low SM variation; thus, the signal from the surface could be 

degraded by the background noise of the instrument. Thirdly, the low Ri-value of densely 

vegetated regions might be associated with the signal attenuation and scattering caused by 

dense vegetation canopies. To compensate for these errors, since active sensor-based SM 

retrieval is known to produce better SM information than passive sensor-based SM retrieval 

over densely vegetated regions, active sensor-based SM estimates could be employed when 

CyGNSS-derived rSNR is combined with other satellite-based SM products (Kim et al., 2018). 

 

5 Conclusion 

This study shows the potential of CyGNSS observations to fill the current spatial and 

temporal gap in SM estimations provided by existing satellite-based SM retrieval systems. We 

found a promising application of CyGNSS-derived rSNR in agricultural monitoring systems 

since rSNR reasonably describes SM variability over croplands. However, over sparsely and 

densely vegetated regions, the performance of SM estimation from rSNR seems to be degraded 

by erroneous scattering and attenuation of GPS signals. To overcome these limitations, we 

combined rSNR value with SMAP data. In this way we were able to achieve daily estimations 

of SM with reasonable data quality. 

These study results were estimated based on one complete year of CyGNSS 

observations. However, this study length might be not enough to gain the minimum or 

maximum values of nSNR required for rSNR calculation. Future studies should consider both 
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growing and non-growing seasons for the sensitivity analysis to precisely investigate the 

impact of vegetation effects on rSNR values. 
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Figure 1. Maps of (a) The average value of CyGNSS-derived rSNR, (b) The average value of 

SMAP-based soil moisture, (c) The number of observations of CyGNSS-based rSNR, (d) The 

number of observations of SMAP (both ascending and descending), (f) The average value of 

GPM-based precipitation, and (f) The difference between (c) and (d) over CONUS from March 

2017 to March 2018. The upper panels in (a) and (b) indicate longitude zonal means of each 

map’s variable. Marker sizes in zonal plots illustrate the number of pixels used in zonal mean 

calculations, and shaded regions show ±1 standard deviation. 

*NODc: Number of observation by CyGNSS 

*NODs: Number of observation by SMAP 

  



 

© 2018 American Geophysical Union. All rights reserved. 

 

Figure 2. Time series of CyGNSS-derived rSNRSWI (red dots), SMAP SMSWI (green squares), 

and combined SM (CyGNSS+SMAP combined) (blue stars), in-situ SM (grey lines), and 

GPM-derived precipitation (blue bars on right y-axis) with respect to different amount of 

vegetation water contents (VWC) and land cover types (a) 0.89 kg∙m-3 (Grasslands) (b) 2.30 

kg∙m-3 (Croplands) and (c) 4.12 kg∙m-3 (Woody Savannas), respectively. 
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Figure 3. (a) Maps of the statistical result for the CyGNSS-derived rSNR for Ri estimates for 

the period March 2017 to March 2018. (b) pie charts show the land cover types classification 

from the IGBP based on VWC ranges. (c) mean Ri for CyGNSS-derived rSNR in terms of 

different land cover types. The gray line for each circle indicates standard deviation. The 

number of data used for each land cover types is indicated by a number next to each circle. (d) 

the IGBP land cover types classification map. 44,185 pixels are used for this analysis in total. 


