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A B S T R A C T

Measurements made by spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) instruments
have shown strong reflected power over inland waters that has been attributed to coherent scattering coming
from the first Fresnel zone. Previous work in the field has shown the ability of GNSS-R to observe the global
surface water distribution by generating dynamic maps of wetlands and other inundated areas. These maps can
be generated by leveraging the large difference in received power of the GNSS signals as they reflect from water
surfaces compared to land. In this paper, we utilize a full-forward scattering model approach to evaluate the
accuracy of these maps. The CYGNSS End-to-End Simulator (E2ES) was extended to include the contributions
from coherent surface scattering in heterogeneous regions where the area around the specular point contains
both water and land in complex geometries. The simulator is then used to analyze the accuracy of a current
approach to estimate the surface water content in the first Fresnel zone from a single measurement, called a
fractional water in footprint approach. We find that contributions to the total received power by the scattering
from outside the first Fresnel zone as well as CYGNSS instrument effects impact the accuracy of this approach.
Furthermore, the measured signal from calibration scattering targets is compared to the results of simulation to
validate the scattering model. The work shows that the variability of the peak reflected power over inland bodies
of water due to the scene heterogeneities should be accounted for in designing retrieval algorithms to map
wetland extent.

1. Introduction

Wetlands are areas that are permanently or intermittently in-
undated or saturated, and support a wide range of vegetation types and
ecosystems. Water stored in wetlands is an important component of
terrestrial water storage as it affects not only local hydrology and
ecosystems, but also surrounding floodplains, and plays a significant
role in the emission of global atmospheric methane. Wetlands act as
natural flood barriers, temporarily storing excess precipitation/runoff
or containing storm surge, and in many areas of the world wetlands are
crucial resources for local communities. As the coupled water and
carbon cycles accelerate and intensify in a changing climate, our ability
to adapt and mitigate will depend on improved measurements of wet-
land (including flooding resulting from severe weather) extent and
changes globally and frequently. Quantitative assessments require
characterization of wetland dynamics across time scales from days to
years and spatial scales down to sub-km. Nevertheless, a complete and

consistent map of global wetlands still needs to be obtained as the
Ramsar Convention (Ramsar Convention, 2015) calls for a wetlands
inventory and impact assessment. In particular, extensive flooding as-
sociated with hurricanes and other severe weather events is becoming
more commonplace, affecting the lives of millions of people worldwide.
The ability to respond to emergencies rests on the knowledge of the
localization and extent of the affected areas, which might be changing
over the course of days or less.

Existing remote-sensing methods for global wetland and flood
mapping include optical, hyperspectral, and microwave techniques, all
presenting strengths and weaknesses associated with their electro-
magnetic frequency of operation, the mission design and/or the timely
availability of the data. For instance, the upcoming Surface Water and
Ocean Topography (SWOT) mission carrying a Ka-band radar will be
able to map rivers and other terrestrial open water bodies at very high
spatial resolution (< 100 m) (Fjørtoft et al., 2014; Grippa et al., 2019),
but the repeat frequency of 22 days will not be sufficient for observing
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the rapid change in surface water dynamics at the tropics (Brivio et al.,
2002; Oberstadler et al., 1997). One specific difficulty is due to the
intrinsic heterogeneity of wetlands, presenting different types of vege-
tation, varying over relatively small spatial scales, and partially or to-
tally obstructing the water underneath. At the NASA 2018 Workshop of
the Terrestrial Hydrology Program (Pavelsky and Minear, 2018), an
international community identified key science questions and mea-
surement requirements for inundation extent data products, re-
cognizing that the current data products are not well validated and do
not meet the required resolution. Significantly, errors in determining
the extent of wetland inundations and their dynamic changes limit our
ability to assess their contributions to the release of methane into the
atmosphere, a potent green house gas affecting Earth's climate (Zhang
et al., 2017).

GNSS Reflectometry is an emerging remote sensing technique first
proposed for ocean topography and winds (Martin-Neira, 1993;
Garrison et al., 1998). It relies on the availability of signals transmitted
by the GNSS networks that are collected by specially-designed receivers
after bouncing off the Earth's surface in a bistatic radar configuration.
This concept takes advantage of the ever-increasing number of GNSS
transmitting satellites, and can yield many randomly distributed mea-
surements with global distribution. The receiving system is relatively
simple and economical to deploy in low Earth orbit, resulting in con-
stellations of receivers that enable much higher temporal sampling
frequency as compared to a single satellite (Chew et al., 2017).

The first space-based experiment that shed light on the potentials of
reflectometry for a range of applications in addition to ocean wind
speeds was the Surrey Satellite Technology Ltd. (SSTL) UK-DMC-1 sa-
tellite launched in 2003 (Gleason et al., 2005). This was followed by
TechDemoSat-1 (TDS-1), a near-polar orbiter carrying a suite of in-
struments including a (SSTL SGR-ReSI) GPS receiver, launched in 2015
(Unwin et al., 2020). Shortly after, the NASA Venture Cyclone GNSS
(CYGNSS) mission was launched in December 2016, consisting of a
constellation of eight small satellites each flying a (SGR-ReSI-derived)
GPS receiver as part of their payloads to measure wind speeds in hur-
ricane conditions (Ruf et al., 2016). Each receiver collects scattering
contributions in the (primarily) forward scattering direction from an
area around the specular reflection point, determined by delay and
Doppler filters designed to obtain a surface selectivity by coherent in-
tegration in the receiver (Zavorotny and Voronovich, 2000). By cross
correlating the transmitted signal along the propagation path with a
replica, a sequence of 1-ms coherently integrated reflection waveforms
is generated, which are subsequently summed incoherently over 1-
second intervals yielding a series of independent reflection measure-
ments. These measurements are given as Delay Doppler Maps (DDM).

Immediately following the availability of data from TDS-1, a
number of studies in the community of GNSS-Reflectometry started
focusing on reflections over wetlands (Zuffada et al., 2016; Chew et al.,
2016; Nghiem et al., 2017) and further intensified since analysis of the
CYGNSS data began showing the ability to identify small-scale land
features such as rivers and bodies of water even partially obstructed by
vegetation. In (Nghiem et al., 2017; Zuffada et al., 2017), based on
DDM characteristics such as peaked (limited spread in delay and dop-
pler) and symmetric shape, and very high reflected peak power, it was
hypothesized that over wetlands there are strong coherent specular
reflections in the collection area of the signal (defined by isorange and
isodoppler zones), originating from (even small) areas of standing
water, resulting in the measurements' magnified sensitivity to water
because of its high electric permittivity and relatively smooth surface
compared to dry land and/or vegetation. Plots of peak power, corre-
sponding to CYGNSS measurements' specular points falling in a given
cell, aggregated over a period of time, and displayed over large regions
with complex hydrology such as the Amazon basin clearly showed the
potential of CYGNSS to “map” surface hydrology of intricate scenes at
the continental level (Fig. 1).

When forming these maps, it is typically assumed that the peak of

the reflected power is dominated by coherent scattering and hence can
be represented by a simple radar equation based on the Friis formula
that expresses its dependence on the reflection geometry and range,
antenna gain, transmitted power and surface reflectivity (Chew et al.,
2017). Additionally, it was assumed that the contribution to the peak
power comes only from the first Fresnel zone (FFZ), thus implying that
the measurement resolution, driven by the size of the FFZ, is much
higher than in the case when incoherent scattering is dominant (in
which case it is determined by the GPS pseudorandom noise (PRN) code
chipping rate). This simple relationship has introduced the surface re-
flectivity as a working parameter that can be retrieved from the DDM
and whose range of variability was first associated with the percentage
of water in the measurement footprint (Chew et al., 2016). However, it
was found that determining how much water is in the footprint is dif-
ficult especially in cases of small percentage values, where the corre-
sponding variability of the surface reflectivity can be quite high. It is
easier to associate the changes of surface reflectivity to the state of the
scene in a binary fashion, such as determining the presence or absence
of standing water (in any amount) over a period of time (Chew et al.,
2018; Morris et al., 2019). In particular, both of these studies show that
surface reflectivity changes can be correlated to before and after
flooding events by establishing a threshold of surface reflectivity that
discriminates between the two conditions.

In making the above simplified assumptions one neglects the effects
of roughness, a confounding variable since it might look like con-
tributions from vegetation or variations in topography/reflection geo-
metry/transmitted power/antenna pattern. Furthermore, since the re-
ceiver performs the cross correlation at the same 1-msec rate on land as
it does on water, the collection area for a given DDM bin as defined by
the isorange/isodoppler lines is far larger than the first Fresnel zone (or
a small number of Fresnel zones). This implies that it is arbitrary to talk
about spatial resolution in terms of Fresnel zones, but rather we should
focus on whether the DDM peak power is determined by one or more
Fresnel zones only. This point is not unimportant when talking about
frequency of measurements, and coverage. In practice, a measurement
is assigned to the point along the reflection track that corresponds to
the specular reflection, as provided by the CYGNSS project. However,
the footprint is strictly speaking still potentially affected by the iso-
range/isodoppler curves across track and its along track integration.

In this paper we take a critical look at the basic assumptions of
earlier work, and we investigate how scattering is affected by the size
and topology of surface water bodies such as rivers and lakes, and
whether realistic scenes are expected to produce a range of peak re-
flected power by virtue of their complexity, depending on how they are
sampled. In such cases, knowledge of this natural variability can help to
better interpret the observed signal and its derived geophysical para-
meters. The ultimate goal is understanding the potential of CYGNSS to
map hydrological features at much smaller scales than those reported in
earlier work. Section 2 discusses scattering from rough surfaces and
present heterogeneities described by complex boundaries between
highly reflecting (including attenuation due to vegetation) and com-
pletely absorbing media, for the purpose of identifying the coherent and
incoherent components of the scattering. Next, Section 3 discusses the
sources of variability in the peak received power as well as the spatial
resolution of the coherent scattered signal, specifically how it is affected
by the scene complexity and boundaries. Section 4 then presents si-
mulated CYGNSS measurements over a highly complex yet simplified
hydrology basin, providing an interpretation of actual measurements at
this large scale. Section 5 presents a comparison between the modeled
and the measured CYGNSS reflections over a lake, as a first validation
of our scattering model.

2. Coherent scattering model for inland water bodies with
complex geometries

This section describes the coherent scattering model for CYGNSS
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measurements that was developed in this work and its specific appli-
cation to inland water bodies with complex geometries.

2.1. Theoretical considerations for coherent scattering

First airborne experiments that studied the use of GNSS bistatic
reflections for remote sensing purposes considered an ocean surface as
the object of interest. If the ocean surface is ideally calm these reflec-
tions are coherent, which means that the phase of the incoming EM
wave is preserved, and the reflected wave would travel in a nominal
specular direction. However, because of wind action on the ocean its
surface becomes rough, which leads to diffuse, incoherent scattering of
EM waves. The angular spread of these diffusely scattered waves
around the nominal specular direction depends on surface roughness Δh
which can be characterized by the Rayleigh parameter (Beckmann and
Spizzichino, 1963),

=R h cos2 ( )/ .a
2 1/2 (1)

For winds above 3–4 m/s and long enough fetch, the surface
roughness Δh is such that this parameter for L-band signals and small
enough incidence angle θ is much greater than one, indicating a total
extinction of the coherent component and an onset of the strong diffuse
scattering regime. For Ra < 1, theoretical models predict a regime of
weak diffuse scattering accompanied by a partially coherent component
(Voronovich and Zavorotny, 2017). However, because of a high pre-
valence of swell in the world's oceans, it is rare to have values of Ra < 1,
and thus there is a lack of coherent GNSS reflections, even at weak
winds below 3 m/s. Reflections of GNSS signals from relatively small
inland bodies of waters such as lakes, reservoirs, wetlands and rivers
exhibit both the coherent and weakly-diffuse incoherent component in
the DDM. This is due to overall weaker winds, shorter fetches, and
absence of swell for these water basins.

In the general case of both coherent and incoherent scattering, the
mean value of the DDM takes the form of a bistatic radar equation:
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where PtGt forms the transmitter's Effective Isotropic Radiated Power
(EIRP); Gt and Gr are the transmitter and receiver antenna gains, re-
spectively; R1 is the range from transmitter to the point on the surface;
R2 is the range from the surface to the receiver; χ is the Woodward
Ambiguity Function (WAF); γ is the attenuation factor due to vegetation
canopy (if present); σpq0 is the total polarization-dependent normalized
bistatic radar cross section (NBRCS), with p and q the incident and
scattered polarizations, respectively.

We will then represent the total received power as a sum of its co-
herent and incoherent components (Voronovich and Zavorotny, 2018):

= +Y f t Y f t Y f t( , ; ) ( , ; ) ( , ; ) .coh inc
2 2 2 (3)

Many previous works have examined the coherent component of the
microwave power bistatically scattered by a rough surface (Voronovich
and Zavorotny, 2018; Fung and Eom, 1983; Ulaby et al., 2014). Based
on those models, for a large plane surface covered by a small-scale
roughness, the coherent component of the power is given by:

=
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where the surface roughness loss term ψ = e(−4Ra
2) depends on the

Rayleigh parameter Ra and Γ is the Fresnel reflection coefficient. The
coherent component exists only in a small angular region around the
nominal specular direction (Ulaby et al., 2014).

Several parameters in (4), such as Gr, Pt, or Γ may vary in time and/
or across the surface. However, for the time and spatial scales we are
evaluating, it is possible to assume that these parameters in a given
scene are constant. This equation is an analog of the image theory
version of the Friis formula and is well known in radar applications
(Ulaby et al., 1986).

Here, we can introduce the surface reflectivity, which is often used
in these GNSS-R applications. The Surface Reflectivity (SR) is found by

Fig. 1. CYGNSS measured SNR aggregated over 60 days at their reported specular locations over the Americas, showing sensitivity to inland waters. Colour scale goes
from blue (0 dB) to red (25 dB). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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rearranging the image theory Eq. (4) for an effective value of the re-
flection coefficient, Γ, and replacing the received peak power Y2 with
the measured signal-to-noise ratio (SNR). Because the SNR is not ex-
actly related to the received, incident power level the equation for the
SR is proportional to the measured SNR from the DDMs (Chew et al.,
2018). This relation can be written as:

+SR SNR R R
P G G

(4 ) ( ) .t r

t t r

2 2

2 (5)

It is important to note that CYGNSS measurements of SNR are
subject to varying noise power and instrument gain, among other ef-
fects that can make this proportionality not exactly linear.

Eq. (4) reveals that the measured DDM is proportional to the pro-
duct of three parameters related to properties of the scattering object.
Those are: the attenuation factor due to vegetation canopy γ, the power
Fresnel reflection coefficient |Γ|2 of the mean surface, and the decorr-
elation factor ψ, which is driven by the surface roughness. In order to
retrieve one of them we need to know the other two. For CYGNSS re-
flections at most incidence angles, the decorrelation factor predicts that
coherent power only exists for Δh < 5 cm. If the object is perfectly flat,
ψ = 1, and if there is no vegetation, γ = 1, then the DDM measure-
ments can be used for calibration purposes, i.e. for estimating instru-
mental factors entering (4). The uncertainties associated with these
factors are very important and might play a critical role in the assess-
ment of the feasibility of CYGNSS and other GNSS-R mission retrieval
algorithms (see e.g., (Wang et al., 2019)).

The adoption of Friis formula in (4) to describe the DDM coherent
component in the case of land and wetlands scenes is not adequate if
those scenes are heterogeneous. In the case of relatively small water
bodies, or for heterogeneous scenes, Ycoh cannot be expressed by such a
simple expression as in (4). For arbitrary shaped scattering scenes,
which are being considered in our study, we seek a numerical solution
for scattered fields with complex amplitudes as described by diffraction
integrals.

2.2. Coherent scattering model for inland bodies of water

In what follows, we present our model for coherent scattering from
inland bodies of water with arbitrary shapes. To begin, the scattered
electric field is approximated using the Kirchhoff diffraction integral
(Bass and Fuks, 1979):

= +E f E jk p
R R

exp jk R R dS( )
4

[ ( )] ,s 0
1 2

1 2 (6)

where Es is the scattered field at the receiver, p describes amplitudes,
phases and polarizations of the electric fields on the surface S and the
impedance of the scattering medium; R1 is the range from transmitter to
the point on the surface; R2 is the range from the surface to the receiver.
E0 describes the amplitude of the transmitted field. It is well-understood
that the Kirchhoff approximation has its limitations in accuracy
(Thorsos, 1988). Since we are looking at reflections in the specular
direction, this approximation is sufficient to describe the reflecting
surface.

We assume a smooth surface and follow the results in (Beckmann
and Spizzichino, 1963). The effects of polarization are only considered
when calculating a reflection coefficient Γ for the right hand circularly-
polarized to the left hand circularly-polarized case,

=p cos( ) ( ), (7)

where θ is the incidence angle at the specular point on the surface. Over
the surface area we are considering θ does not vary significantly and we
can treat it as constant. The components of (7) may vary over the
surface to capture different heterogeneous scenes. It is assumed that
these variations over the surface occur at a spatial scales much larger
than a wavelength, making the approximation sufficiently accurate.

The form of (6) is only applicable to a static scenario. Since the
geometry of our receiver and transmitter is dynamic and measurements
of the field are integrated over a coherent integration period, it is im-
portant to carefully consider how time variation is incorporated into
our model. We will explicitly denote the scattered field at the receiver
at time t as

= +E f t E jk p t
R t R t

exp jk R t R t dS( ; )
4

( )
( ) ( )

[ ( ( ) ( ))] ,s 0
1 2

1 2 (8)

where, since the change in time is slow relative to the speed of light, we
utilize the quasi-static approximation as in (Zavorotny and Voronovich,
2000). This approximation does not address relativistic effects (which
are negligible) but does accurately capture Doppler shifts over the
surface. It requires that over the time period the signal is processed, all
terms in (8) besides the phase be constant.

Next, we will focus on a specific time interval [t1, t2] with mid-point
tm. The duration of this interval (which we later use as our coherent
integration interval) is short relative to the dynamics of the receiver and
transmitter. Consequently, we will approximate (8) over this interval by
assuming that the effect of the change in amplitude of the integrand is
negligible and that the effect of the change in phase is approximately
linear

=E f t E jk p t
R t R t

exp j f t dS t t t( ; )
4

( )
( ) ( ) [ ( ; )] , [ , ]s

m

m m
0

1 2
1 2 (9)

where ϕ is the phase over the surface,

= + +f t k R t R t f t t t( ; ) ( ( ) ( )) 2 ( )( ),m m D m m1 2 (10)

and the linear variation in phase fD is the Doppler shift at a particular
location on the surface,

= + =f t
c t

R t R t( ) 1 ( ( ) ( )) .D t t1 2 (11)

Note that, if the duration of the coherent integration interval were
to increase appreciably, it could be necessary to extend this to a pie-
cewise linear approximation over the interval.

Next, we recognize that (10) applies for a single frequency but our
GNSS signal technically occupies a narrow, but non-negligible band-
width. Over the small frequency range of the GNSS signal f ∈ [f1, f2], we
will assume that the magnitude of the field is constant and the phase
varies linearly with frequency. The field is then,

= +E f t E jk p t
R t R t

exp j f t j f dS( ; )
4

( )
( ) ( )

[ ( ; ) 2 ]s
c m

m m
c d0

1 2 (12)

where fc is the center frequency, kc is the wavenumber at the center
frequency, and phase now incorporates a linear phase variation with
frequency τd (i.e. the group delay) which varies over the surface.

Now, let us assume the transmitter transmits signal r(t) that is
modulated onto the incident field. The signal at the receiver x(t) is
given by the convolution

=x t E f t R f e df( ) ( ; ) ( )s
j ft2

(13)

which is the standard form for a linear time-varying (LTV) system
where R(f) is the frequency domain representation of r(t). Substituting
(12) into (13), we get

= +x t E jk p t
R t R t

e R f e df dS( )
4
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( ) ( )
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m m

j f t j f t
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1 2
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= +E jk p t r t
R t R t

e dS
4
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( ) ( )
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m m

j f t
0

1 2
( ; )c

(15)

The receiver forms the cross-correlation Y between a locally gen-
erated reference signal r(t) and the received signal x(t). The cross-
correlation occurs over the time interval t ∈ [t1, t2] at delay offset τ and
frequency offset δf,
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where Tc = t2 − t1 is the coherent integration time. Substituting (15),
we arrive at the form

= +Y f jk p t f f
R t R t

exp jk R t R t dS( , )
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where we have made an approximation that the coherent integration
time Tc is sufficiently long for the cross-correlation value to converge to
its expected value

+ +
T
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For our study, we will focus on a small area around the specular
point, and it is sufficient to approximate the transmitter and receiver
antenna patterns as constant, and the power of the reflected signal after
coherent integration is

=
+

+Y f G G P jk f f
R R

exp jk R R dS| ( , )|
(4 )

cos( ) ( ) ( , ) [ ( )] ,r t t
S

c d D
c2

3 1 2
1 2

2

(19)

where the geometric quantities are evaluated at tm. Changes in the
CYGNSS received antenna pattern projected onto the scattering surface
area were deemed to be negligible (< 0.1 dB) over the ~10 km surface
area contributing to the coherent power. The form of (19) is an ex-
tension of (4) to coherent scatterers with complex boundaries.

The above model only applies to the coherent component of the
reflection. Real scenes will also contain non-coherent scattering from
rough surfaces over either water or land. In this case, the total DDM
would be formed by the sum of the coherent and non-coherent com-
ponents of the scattered fields. The form of the non-coherent compo-
nent as well as the basis behind the summation of coherent and diffuse
components has been extensively reported elsewhere (Zavorotny and
Voronovich, 2000; Voronovich and Zavorotny, 2018).

2.3. Numerical implementation

In order to solve the integral numerically, we must discretize the
surface. When implementing the discrete scattering integral, the surface
must be evaluated over a large enough area to accurately account for all
of the contributions to the received electric field. The span of the grid
(on which surface S is located) was 10 km × 10 km. A large set of grid
sizes were examined to verify that solutions for the received power
converged. In addition to the surface extent, the phase must not change
too quickly over each patch area dS in the integral. That is, we want the
received phase from the center of the patch to be representative of the
edges as well. In addition to the total extent of the surface we must
evaluate the integral over, the discretization size is also of importance.
If the size of each differential area dS in the numerical implementation
of the integral is too large, the surface will be under-sampled. In (19),
most of the terms vary slowly over the total grid surface. The two main
terms that change rapidly in the integral now are the phase term and
the boundaries of the integration that describe the scattering surface, S.
The amplitude of excitation over the grid also varies slowly, leading to
the main contributor to changes in the received power being the in-
teraction between the Fresnel zones, or phase on the surface, and the
shape of the scatterers themselves. In order to get an accurate solution
from the integral equation, the size of each patch on the surface must be
small enough to sample the most rapidly varying quantity, which is
generally the phase. We have found that values below ~30λ produce
minimal phase variation at the edges of the grid, and lead to a con-
verged solution for the received power.

In this paper, we approximate the surface as either scattering with a
Fresnel reflection coefficient Γ, or non-scattering with a reflection

coefficient of zero. In reality, a small amount of diffuse scattering also
occurs from the portion of the surface that is not electrically smooth
enough to contribute to the coherent signal power. However, this
contribution is generally small in comparison to the coherent power in
the peak of the DDM. The goal is to utilize a simulator in order to
evaluate the effective scattering area of coherent reflections, as well as
test the efficacy of current wetland inundation retrieval algorithms.

This scattering integral was implemented inside the CYGNSS End-
to-End Simulator (E2ES) (O'Brien, 2014). The E2ES is a detailed soft-
ware simulator written to emulate the GNSS-R bistatic signal scenario,
and models all the steps of forming the DDMs on CYGNSS. For this
paper, we have extended this E2ES to include coherent scattering from
heterogeneous surfaces, as described above. The simulator allows us to
evaluate scattering scenes with realistic sets of parameters in order to
examine the nature of the variability in the scattering scenes.

3. Sources of variability in the peak power of coherent scattering

Having defined our coherent scattering model, several important
sources of variability in the peak power that will affect retrieval algo-
rithms can be identified. First, the size and shape of the coherent
scattering surface will introduce variations in the amplitude. In this
section, we begin by discussing how the spatial resolution is more
complex that previous work has assumed. We also discuss how surface
roughness and vegetation impact the scattered power.

3.1. Spatial resolution of coherent scattering

It is important to better understand the spatial resolution of CYGNSS
measurements when coherent scattering is present. While it is com-
monly approximated that only the spatial area corresponding to the
first Fresnel zone contributes to coherent scattering, we utilize our
model to illustrate that the actual question of spatial resolution in
heterogeneous scenes is more complex. Note that our analysis focuses
on the spatial resolution after coherent integration only.

To begin, the phase ϕ of field over the surface is captured in the
exponential term of (19),

= +r k R r R r( ) ( (( )) ( )),c 1 2 (20)

where r is the position vector that varies over the surface. Fig. 2 shows a
plot of this function over the surface of the Earth for a typical CYGNSS
scenario. In this case, the altitude of the transmitter is 20,160 km (ty-
pical GPS satellite altitude), the altitude of the receiver is 500 km, and
the incidence angle is 50 degrees. The center of the surface corresponds
to the specular point and the phase has been made relative to this point.
The phase forms Fresnel zones – concentric regions around the specular
point that corresponds to a shift of 180 degrees of phase. Note that
although the wavelength at the GPS L1 frequency is only 19 cm, the
distance over which the phase changes on the surface according to (20)
is much larger.

Several important properties are illustrated in Fig. 2. First, the first
Fresnel zone is special in that it represents an elliptical region (rather
than a ring) over which the phase varies slowly by one period. The
major axis of the first Fresnel zone is approximately 1 km and will
change based on the incidence angle. Second, for the case of CYGNSS
where the receiver and transmitter are very far from the surface, the
zones are symmetric and centered around the specular point. Third, the
surface area of each zone is nearly identical, which can be confirmed
via numerical integration. This point can be seen more clearly in the
right-hand plot of Fig. 2, where each of the first 7 zones are delineated
and colour-coded. Finally, it should also be noted that the size of the
Fresnel zones are much smaller than the size of the WAF (defined by the
intersection of isorange and isodoppler lines) projected onto the sur-
face. This is approximately 20 km in major axis for the CYGNSS case
where Tcoh = 1ms, and describes the typical CYGNSS resolution for non-
coherent scattering.
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In order to illustrate the contributions of different Fresnel zones, the
scattering integral in (19) was evaluated to predict the peak SNR re-
ceived from a simple circular-shaped scatterer as its radius increases.
The nominal CYGNSS-GPS geometry with 50 deg. incidence angle was
chosen for this case. The results, shown in Fig. 3, indicate that as the
scatterer size increases between zero and the radius of the first Fresnel
zone, there is a rapid increase in reflected power as a function of area-
squared. The power stops increasing as the radius begins to incorporate
the surface area where the phase relative to specular point exceeds 90
degrees. As the size increases further, the received power converges to
the power level predicted by image theory (dashed red curve). How-
ever, there is ripple (> 3 dB) as contributions from higher Fresnel zones
add constructively or destructively. Note that the total power can ex-
ceed the level predicted by image theory. We also observe that the
power can drop below the predicted level even when the first Fresnel
zone is full. Contributions by the various Fresnel zones are either con-
structively or destructively changing the total electric field at the re-
ceiver. The exact way in which complex shapes will affect the total
received power is not known a priori. The amplitude of these oscilla-
tions in the received power are significant because they are large en-
ough to confound the effects on the peak power due to other wetlands
parameters (such as vegetation attenuation) that we are interested in
retrieving, and adds an ambiguity to the surface scatter size. For some

simple scatterer shapes, closed-form solutions can be found (Balakhder
et al., 2019). The interactions between the scattering surface and the
Fresnel zone geometry can affect the received phase of the signal as
well.

Fig. 4 shows the case where the incidence angle is set to 0 degrees.
Here, the Fresnel zones are now circularly shaped. Because the circular
scatter now matches the shape of the Fresnel zones, we observe that the
magnitude of the reflected signal can vary as the scatterer size in-
creases. Since the area of each Fresnel zone is nearly identical and the
other parameters (antenna gain, range, etc) cause negligible variations
in the amplitude between subsequent zones, the integral over each zone
cancels with the previous one nearly perfectly. Although the scatterer
shape is a degenerate example, it illustrates the point that the con-
tributions from Fresnel zones other than the first are clearly not neg-
ligible. In fact, we would find that this oscillatory behavior extends for
hundreds of Fresnel zones until it is finally dampened by the WAF and
converges. Although this result was for zero degree incidence, this re-
sult would occur for any incidence where the scatterer were made to be
the same shape as the Fresnel zones.

Through this illustration, it is clear that it is an over simplification to
state that coherent scattering observed by CYGNSS is measuring only
the contents of the first Fresnel zone or even the first several Fresnel
zones. Instead, a more accurate description is as follows. When the

Fig. 2. Example of the reflected signal phase (degrees) over a 3.5 km simulation grid, which shows the Fresnel zones. This case uses a typical CYGNSS-GPS geometry
and a 50 deg. incidence angle.

Fig. 3. SNR vs. radius of circular scatterer θ = 50. Dashed red line shows image theory result. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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scatterer is small and is located in only a portion of the first Fresnel
zone, its scattered power is directly proportional to its area squared. If
its size occupies the entirety of the first Fresnel zone, then the magni-
tude of the reflection has a variation (often > 3 dB) that depends very
sensitively to the shape of the boundary, even if this boundary extends
several hundred Fresnel zones away.

Fig. 5 shows the reflected power from a circular shaped scatterer
1 km in diameter which is moved away from the specular point. In this
case, we observe that there is significant reflected power even as the
location of the scatterer moves well outside the first Fresnel zone. Al-
though the magnitude has decreased substantially, there is still suffi-
cient SNR to receive the signal. This effect was shown both theoretically
(Balakhder et al., 2019) and experimentally (Geremia-Nievinski et al.,
2016).

Based on these examples, it is clear that the resolution of coherent

scattering cannot simply considered to be the first Fresnel zone.
Contributions from the scatterer's boundary or scatterers located out-
side the first Fresnel zone will introduce variability in the magnitude of
received signal at a given measurement point, identified by the specular
reflection point. It should be noted that the results presented here in-
cluded motion of the receiver only during the coherent integration in-
terval. If additional non-coherent summation of measurements is per-
formed (as is done to produce the CYGNSS DDMs), then the along-track
motion would also need to be addressed in understanding of the total
spatial region impacting the measurement. Further confounding vari-
ables that affect the peak coherent power in wetland scenes include
attenuation from both vegetation and small-scale surface roughness.
The nature of these two effects are introduced and further discussed in
the following paragraphs.

Fig. 4. SNR vs. radius circular scatterer with θ = 0. Dashed red line shows image theory result. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. SNR vs. offset of a 1 km diameter circular scatterer.
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3.2. Vegetation attenuation effects

Most scattering theoretical models treat the vegetation canopy as a
uniform layer consisting of random scatterers (Fung and Ulaby, 1978).
The vegetation layer is described either as a continuous medium or as a
discrete medium, although the latter is used most frequently. In the
discrete case, the vegetation canopy is subdivided into single elements,
where each one is modeled electromagnetically (i.e. permittivity,
scattering cross section, and extinction cross section, etc.), providing
more rigorous models (Karam et al., 1992; Ulaby et al., 1990). For most
crops and low vegetation, the vegetation nadir optical depth τ0 can be
written as a function of the plant water content (PWC), in [kg/m2]. The
following linear relationship is commonly provided in the literature,
(Jackson and Schmugge, 1991):

= b PWC.0 (21)

The parameter b is a function of the canopy type/structure, polar-
ization, and wavelength. Previous studies showed that at 1.4 GHz, a
value of b within the range 0.12 ± 0.03 was found to be representative
for most agricultural crops and low vegetation (Jackson and Schmugge,
1991). The empirical models treat the effect of vegetation on GNSS
reflected signals via an additional attenuation factor on the received
signal power, (Ulaby et al., 1986; Kerr et al., 2012). This attenuation
factor, γ, can be expressed in terms of τ0:

= exp cos( 2 / ( )).0 (22)

The 2 factor accounts for the two-way attenuation of the GNSS
signals along the incident and reflected paths through the vegetation
layer. Fig. 6 shows the expected range of attenuation for a set of typical
incidence angles and over realistic PWC values (Chan et al., 2013;
Saatchi et al., 2007). It can be seen that the expected vegetation at-
tenuation for GNSS reflections can cover a large portion of the dynamic
range of CYGNSS SNR values (apprx. 0-24 dB), and can drastically re-
duce the signal power.

3.3. Surface roughness effects

Small-scale surface roughness plays an important role in de-
termining the total signal power that is specularly reflected. The dec-
orrelation loss variable ψ introduces significant attenuation with even a
small amount of RMS height change on the surface. This effect and the
transition between coherent and diffuse scattering for inland waters is
more thoroughly examined in a companion paper (Zavorotny et al.,
2020). As (1) shows, the Rayleigh parameter and thus decorrelation loss
is dependent on both the amplitude of the water surface waves and the
incidence angle. A few centimeters of RMS height change can strongly
reduce the coherent power, leading to additional complications in
surface water retrievals. Fig. 7 shows the expected range of attenuation
for a set of typical incidence angles and a range of surface roughness
(Δh) values. The total extinction of the coherent component occurs
rapidly with an increase in RMS height.

3.4. Changes in peak power with incidence angle for the roughness,
vegetation, and fresnel zone effects

The roughness parameter ψ can be thought of as an effective surface
roughness, as it is sensitive to the electromagnetic wavelength, RMS
surface height changes, and the incidence angle. Higher incidence an-
gles leads to smaller changes between the phase of the scattered fields
from different parts of the surface, which in turn reduces ψ. However,
for vegetation, the higher the incidence angle is, the longer the path is
of the signal traveling through the vegetation. This leads to an increase
in the attenuation factor, γ. It can be noted that the changes in signal
attenuation for ψ and γ have opposite relations to the incidence angle of
a given reflection: higher incidence angles for a particular scene with
roughness and vegetation will lead to lower ψ, but higher γ. Conversely,
then, lower incidence angles results in larger ψ and lower γ. The scale of
both of these effects on the peak power are on a similar order as the
Fresnel zone effects shown in these simple examples (e.g. Figs. 3, 4, and
5). We still expect the peak power transition between a scene with
surface water and a scene without to be large, but the power will be

Fig. 6. Vegetation attenuation γ (dB) for increasing PWC with b = 0.12 at several incidence angles.
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modulated by both the Fresnel zone behavior as well as the effects of
roughness and vegetation, and it may be difficult to disentangle the
three. In the next Section, we take a closer look at the scale of the
variability in the peak power due to the Fresnel zones and its variation
with incidence angle.

4. Simulation study of coherent scattering from complex bodies of
water

In wetlands, such as the Amazon River basin, heterogeneous scenes
are the ones most often encountered. Fig. 8 shows the MODIS water

mask (black is land, white is water) from a typical area along the
Amazon River (Carroll et al., n.d.). In this paper we treat the topo-
graphy of these inland waters as locally flat and include Earth curva-
ture. For these heterogeneous scenes we are interested in, we treat the
surface as a binary medium where water is reflecting with a reflection
coefficient Γ and land is totally absorbing.

The coherent scattering model was integrated into the CYGNSS End-
to-End Simulator. Observations were simulated by taking information
for transmitter and receiver geometry, GPS EIRP, and receiver antenna
gain directly from the CYGNSS v2.1 data files. This gives us realistic
sampling and power levels for the simulation. In order to accurately
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Fig. 7. Surface roughness attenuation ψ (dB) for increasing roughness at several incidence angles.

Fig. 8. Example water mask along a small segment of the Amazon River, showing the complex geometry of land and inland waters.
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capture the heterogeneity of wetlands scenes, we use the MODIS
MOD44W (250 m) dataset for the inland water scenes (Carroll et al.,
n.d.). The simulated grids accurately capture the realistic mix of inland
water and land in the region of interest, which provides a higher fidelity
model than a simulation of randomly generated scenarios. This forward
model integration in the E2ES framework provides the basis for the
simulation of wetland extent and, consequently the formulation of re-
trieval algorithms.

The next sections study the variability of the reflected signal power.
First, the variability as a function of incidence angle is demonstrated
over a variety of inland water scenes. Second, the variability of the
measured power over a large hydrological basin is simulated and
quantified as a function of the amount of water in the first Fresnel zone.
These two examples highlight the errors associated with the assumption
that the first Fresnel zone defines the resolution of the measurement.
Third, a simple retrieval of percentage of water is performed using the
simulated data after it has been averaged into a grid in order to quantify
impact of this variability in received power.

4.1. Variability with incidence angle

Considering a fixed inland water scene, we first examine how peak
reflected power changes by changing the reflection geometry. This way
we explore the variability of coherent scattering on the surface due to
the complex interactions between the even and odd numbered Fresnel
zones, and the heterogeneous scattering surface. While the specular
point is fixed, the incidence (θ) and azimuth (ϕ) angles change. In this
exercise, the path lengths, antenna gains, etc. have been fixed. For each
(θ, ϕ), the expected received power in the specular direction is calcu-
lated. Fig. 9 shows the peak SNR of three different scattering scenes
over the varying angle pairs. Variance in the received power can be
attributed to complex interactions between the scattering surface and
Fresnel zones. Large changes in amplitude can be seen (nearly 15 dB)
for the same surface for different reflection geometries. This variability
is unique to coherent scattering from heterogeneous surfaces and is not
expected from diffuse scattering or homogeneous surfaces. The scene
over ϕ varies, but is nearly 180 degree symmetric, since for spaceborne
receivers, the Fresnel zones are nearly identical with any 180 degree
rotation. It is expected that this large variability in the received peak
power, even for the same scene, will lead to errors in the retrieval ac-
curacy of surface water content. Over the next few paragraphs, we
discuss how this complex scattering scene affects the current retrieval
approaches.

4.2. Variation over large wetlands scenes

For the results presented in this section, 90 days (2017, days
077–167) of CYGNSS ancillary data was used to simulate the sampling
of the Amazonian region modeled in Fig. 10. The v2.1 data provided
realistic observation values to be used in the simulation for relevant
parameters such as the specular point sampling, transmit EIRP, receiver
antenna gain, and reflection geometry. Then, for all of these samples,
the scattering integral (19) was evaluated using the MODIS data as a
truth watermask (Fig. 10). The aggregation of many data points allowed
for the examination of statistics relevant to the current retrieval algo-
rithms.

As stated earlier, a common approximation in the GNSS-R com-
munity is that the strength of the reflected signal peaks can be ap-
proximated as being proportional to the percentage of the first Fresnel
zone area that is occupied by inland water. This approximation is
predicated on the assumption that the FFZ is the main scattering area,
with minimal contributions from other Fresnel zones. We are interested
in quantifying the error in this approximation. Using this approach, the
fractional water in the FFZ footprint can be estimated by mapping the
received power back to an area-squared curve with a manually chosen
offset. The received SNR values must first be normalized by a few

parameters: receiver antenna gain, EIRP, reflection coefficient, in-
cidence angle, and the transmitter/receiver distances to the specular
point. This is equivalent to the SR value given in (5) with an additional
term for the incidence angle,

cos
1
( )2 . After applying these corrections,

the resulting powers can be used to estimate the percentage of water in
the FFZ. A plot of the modified SNR (the received SNR values nor-
malized by the previously described parameters) and the corresponding
simple area-squared curve is shown in red in Fig. 11. Estimations of the
surface water content in the FFZ are formed by mapping the modified
SNR value to the red area-squared curve. For a given power value (y-
axis), the estimated percentage of water would then be the x-axis value.
In the ideal case, all of the simulated data would be situated directly on
the red area-squared curve. However, the scatter of peak power around
the simple area curve is the result of scattering from outside the FFZ,
and provides a source of error in this retrieval method. This scatter has
also been observed in CYGNSS data as well (Zuffada et al., 2017).

4.3. Impact on retrieval accuracy

Unfortunately, the peak power scatter under the FFZ-scattering area
approximation of Fig. 11 represents a best case scenario with no other
confounding variables (such as vegetation or surface roughness) or
error sources. There are also additional measurement effects that we
must consider in our model. In the CYGNSS data, the measured SNR is
actually a peak-to-mean ratio. Therefore, the minimum SNR is based on
the noise floor of samples in the DDM. In addition, the GPS L1C/A
coded signals that are used by CYGNSS have sidelobes 24 dB below the
peak, so the maximum SNR is approximately 24 dB. This is due to the
way in which CYGNSS measures SNR, which is really a peak-to-mean
ratio. The bins used to estimate the noise floor will also contain the
cross- (between PRNs) and auto-correlation power, which are non-zero
(Blunt, 2007). Additionally, the true peak of the DDM can appear in-
between the measured delay and Doppler bins. This tracking error is
estimated to cause up to 1 dB degradation. CYGNSS measurements are
also produced at a 1 Hz (or 2 Hz) rate, which means that each DDM
contains 1 s (or 0.5 s) of along-track integration time. During this period
the specular point moves approximately 6 km (or 3 km) on the Earth's
surface, causing the measurements to incur spatial averaging. Finally,
the effects of land scattering, vegetation, and any small-scale surface
roughness of the inland waters have been neglected in our simulations.
All of these effects further degrade the accuracy of the percentage in
FFZ footprint approach. After including the effects described above, the
retrieval error for the percentage-water-in-footprint algorithm achieves
approximately 1σ ≈ 20% per 1 Hz measurement. Depending on the
end-user's application, a new approach to estimating water content may
be needed to achieve higher accuracy.

An advantage of GNSS-R over other sensing methods is the large
number of measurements that a small constellation of satellites such as
CYGNSS produce. We can make use of this property by combining many
simulated measurements together to form estimations. One possibility
is to average the data into predefined latitude/longitude bins. Using
MODIS as the truth dataset for this simulation study and gridding into
0.05 degree bins, we can compare with the map of estimated water for
each bin in Fig. 13. First, each SNR measurement is normalized using
the procedure described above. Then, the modified SNR values are
mapped directly to the corresponding percentage of water given by the
area-squared curve (red curve in Fig. 12). Then, these individual esti-
mates are separated into the lat/lon bins based on the reported specular
point location and averaged together. Note, these are the estimates
formed before introducing measurement model effects into the simu-
lation, thus represent a best-case scenario. The gridded percentage
water estimation errors are shown in the bottom plot of Fig. 12. The
error variance of the binned estimations decreases compared to the
individual measurements (shown in top of Fig. 12) while a bias error
mostly persists. The gridded estimations are less noisy than the
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Fig. 9. Left: Three example inland water scenes: Aripuana River (top), Soiai River (middle), and Represa de Balbina (bottom). Right: Corresponding received peak
SNR (dB) as a function of reflection geometry. θ goes from 0 degrees in the center to 70 degrees at the edge of the circle.
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individual measurements, but they still tend to underestimate the true
fraction of inland water when there is water in the FFZ, and over-
estimate the water content when the FFZ is nearly empty.

5. Validation of scattering model using CYGNSS raw IF

In order to validate the accuracy of our scattering model, and thus
the fidelity of the simulated retrieval study, we use results calculated
with the scattering model to compare with measured CYGNSS data. In
addition to its nominal data mode, CYGNSS also has the ability to store
the raw samples taken immediately after the ADC at an intermediate
frequency for a short duration of time (< 60 s). This is called the raw IF
mode. This mode offers much better temporal resolution than the

typical 1–2 Hz CYGNSS products, as well as access to the phase in-
formation, which is typically lost in the incoherent integration step. We
use the raw IF data collected by CYGNSS to examine a representative
geophysical scene and compare the results to our forward model.

By using known targets on the surface, we can increase the con-
fidence in our forward model by showing that the simulated results
match well with the measurements. The targets were identified by the
following properties. First, the target must be an inland body of water
that does not exhibit too much surface roughness. This generally limits
the targets to be small in size so that large surface waves do not de-
velop. Larger surface waves increase the Rayleigh parameter in (1), and
correspondingly increase the decorrelation factor ψ. An increase in ψ
then leads to a reduction in the coherent power, and an increase in

Fig. 10. Amazon River Basin region watermask used for our simulation study. A zoomed in region is shown to highlight the complexity of the watermask.

Fig. 11. Modified simulated SNR after normalization for measurement parameters over Amazon region vs. the fraction of water in the first Fresnel zone.
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diffuse scattering, which is not accounted for in this model. Second, we
want the shape and size of the target to be well known. Rapidly
changing or unknown targets would be difficult to forward model.

Third, it is best for the target to be in an area where the land around it
has minimal surface scattering. For example, steep mountain slopes and
dry land (with minimal soil moisture) are best. This case best represents

Fig. 12. Top: Estimated percentage water vs. truth percentage water in FFZ using simple area-squared approach. Red curve is error free line. Bottom: Estimated
percentage water vs. truth percentage water after averaging samples in Amazon region into 0.05 degree bins. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 13. Top: Truth percentage water map close up of Amazon river system averaged into 0.05 degree bins. Bottom: Estimated percentage water map for 0.05 degree
bins.
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the binary water/no water scene that has been simulated. Finally,
having open water with no vegetation is necessary as well. Any at-
tenuation due to vegetation would be an additional confounding vari-
able, making the validation difficult. Based on these criteria, we have
selected a small crater lake to perform the comparisons with.

Fig. 14 shows maps of target Lake Ilopango with the estimated
specular tracks from Raw IF data (left-hand side). At the time of the
recording on day 229 of 2019, the winds were approximately 3 km/h
NNE with rain. The incidence angle was 36 degrees, and the receiver
antenna gain was 8.7 dBi. For the second recording from day 234 of
2019, the winds were 4 km/h SW with rain, and had an incidence angle
of 15 degrees with the receiver antenna gain of 7.7 dBi.

The water body was simulated using the coherent scattering model
presented in this work. However, for these comparisons, the watermask
data was taken from the occurrence values given by the Pekel et al.
surface water dataset (Pekel et al., 2016). The raw IF data from the
target was processed using a fixed coherent integration time of 5 ms.
The increase in Tcoh over the baseline of 1 ms was chosen to help se-
parate the coherent power from the diffusely scattered power, which
provides a more appropriate comparison with simulated coherent
power. The corresponding CYGNSS ancillary data for these tracks was
run through the updated E2ES with the matching parameters. The local
topography was considered when recalculating the specular point track
over the lake. The curvature of the Earth was also considered in the
position of each piece of the simulation surface grid. Other parameters

relating to the simulation (i.e. grid size and resolution) are discussed in
Section 2.3. The plots on the right hand side of Fig. 14 show a com-
parison between the measured and simulated results. It can be seen here
that for both tracks, the shape of the simulated data (black) matches
well with the measured data (red). Note, there are differences in the
absolute magnitude of the receiver SNR. The conversion from simulated
power to the predicted SNR used an approximate noise floor power of
−140 dBW. This approximation accounts for the portion of the am-
plitude differences that might come from uncertainties in the true
transmitted EIRP, receiver antenna gain, receiver noise power, or other
relevant parameters. Further explanation of these differences may also
be surface roughness. The small amount of wind and rain reported at
the recording times may both have increased the roughness on the
surface, leading to several dB attenuation of the signal power. Other
parameters have also been ignored in this paper, such as the receiver
noise figure (approx. 2 dB), rounding of the cross-correlation amplitude
due to limited receiver bandwidth, or the signal quantization loss. Any
future work utilizing the precise amplitude of the reflection tracks
would greatly benefit from considering these effects.

6. Summary and conclusions

In this paper, we presented the development of a forward model for
coherent scattering from inland waters for the purpose of evaluating the
accuracy of wetland extent retrieval algorithms applied to CYGNSS data
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Fig. 14. Left: Specular point tracks for two Raw IF recordings over Lake Ilopango (Top: Day 229, 2019, Bottom: Day 234, 2019). Right: Comparison between the
measured and simulated peak SNR based on the corresponding specular tracks. Simulated match-up matches the measured power waveforms closely, confirming the
accuracy of the scattering model presented in this paper.
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over land. Specifically, we discuss the contributions to the coherent
scattering from heterogeneous scenes and find that areas outside the
first Fresnel zone contribute to the peak power, and that the peak power
of a given scene varies depending on the observation geometry. We
have shown that contributions from Fresnel zones beyond the first will
affect the total received power, and lead to errors in retrieved water
fraction when using a simple percentage-water-in-footprint algorithm.
The constructive-destructive nature of varying Fresnel zones leads to
ambiguity in the received power when trying to map the received peak
power back into a fractional water footprint. In these heterogeneous
scenes, often encountered in wetlands and other surface waters, we find
that varying factors such as the shape of the scattering surface com-
bined with the Fresnel zone geometry, vegetation attenuation, and
small-scale surface roughness can complicate retrievals. Each of these
three components can introduce variability in the received power that
spans either all or nearly all of the dynamic range of CYGNSS SNR. In
order to accurately retrieve one of these three values, the other two
should be well characterized.

In this paper, we have also used measured CYGNSS raw IF data to
validate the scattering model used in the simulations. The model is
capable of reproducing features observed in the measured data. The
scattering model presented here will continue to be an asset for the
purpose of analyzing errors in current retrieval algorithms as well as
future algorithm development, as we can further examine approaches
to estimating surface water and wetland extent.
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