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ABSTRACT

The Cyclone Global Navigation Satellite System (CYGNSS) consists of a constellation of eight

microsatellites that provide observations of surface wind speed in all precipitating conditions. A method

for estimating tropical cyclone (TC) metrics—maximum surface wind speed VMAX, radius of maximum

surface wind speed RMAX, and wind radii (R64, R50, and R34)—from CYGNSS observations is developed

and tested using simulated CYGNSS observations with realistic measurement errors. Using two inputs,

1) CYGNSS observations and 2) the storm center location, estimates of TC metrics are possible through

the use of a parametric wind model algorithm that effectively interpolates between the available obser-

vations as a constraint on the assumed wind speed distribution. This methodology has a promising per-

formance as evaluated from the simulations presented. In particular, after quality-control filters based on

sampling properties are applied to the population of test cases, the standard deviation of retrieval error for

VMAX is 4.3 m s21 (where 1 m s21 5 1.94 kt), for RMAX is 17.4 km, for R64 is 16.8 km, for R50 is 21.6 km, and

for R34 is 41.3 km (where 1 km5 0.54 n mi). These TC data products will be available for the 2017 Atlantic

Ocean hurricane season using on-orbit CYGNSS observations, but near-real-time operations are the

subject of future work. Future work will also include calibration and validation of the algorithm once real

CYGNSS data are available.

1. Introduction

a. Motivation

Tropical cyclones (TCs) and their precursor storms

spend most—if not all—of their lifetimes over the

ocean, which makes them harder to observe in situ.

Since the advent of remote sensing, fewer TCs go un-

observed (Vecchi and Knutson 2011), and our in-

creased observation of these storms has led to

improved understanding of TC processes. Addition-

ally, the observations that are collected through remote

sensing support the TC situational awareness and

forecasting efforts at warning centers like the National

Hurricane Center (NHC) (Rappaport et al. 2009).

Forecasters are required to estimate the present and

predict the future intensity of TCs, typically defined

as the maximum 1- or 10-min sustained wind speed at

the 10-m observing level associated with the system

(Harper et al. 2010; Office of the Federal Coordinator

for Meteorological Services and Supporting Research

2017). Only 30% of the 6-hourly intensity estimates in

the North Atlantic Ocean (Rappaport et al. 2009) are

guided by aircraft reconnaissance, and next to no

aircraft reconnaissance is performed elsewhere. Un-

fortunately, accurate intensity estimation remains

challenging with and without aircraft reconnaissance.

Intensity estimates in the postseason reanalysis re-

cords have uncertainties of approximately 5m s21

(Landsea and Franklin 2013; Torn and Snyder 2012).

Often, the observational guidance that TC fore-

casters use is based entirely on remote sensing

observations.

Observations of surface wind speed can inform esti-

mates of the intensity of a system. In addition to in-

tensity estimation, surface wind speed observations can

also guide forecasters who are analyzing the maximum

radial extent of 34-, 50-, and 64-kt (1 kt 5 0.51ms21)

surface winds from the center of a storm in geographic

quadrants—commonly collectively referred to as wind
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radii. Wind radii give insight into the surface wind

structure and therefore are useful for a variety of ap-

plications (Knaff et al. 2016).

b. Examples of previous efforts

Satellite remote sensing–based methods have been

developed to estimate intensity in situations where air-

craft reconnaissance is not available. One of these

methods is the Dvorak technique: a method of esti-

mating TC intensity through image pattern recognition.

Two types of Dvorak techniques exist: subjective and

objective.

The subjective Dvorak methods were first based on

visible imagery from geostationary meteorological sat-

ellites (Dvorak 1975); infrared imagery is now included

in the technique (Dvorak 1984). The subjective Dvorak

technique has proven to be a useful tool for estimating

intensity operationally. A discussion of known perfor-

mance limitations and error characteristics can be found

in Knaff et al. (2010).

To lessen subjectivity and increase automation, ob-

jective Dvorak methods have been developed (Velden

et al. 2006), leading to the objective Dvorak technique

(ODT) (Velden et al. 1998) and, more recently, the

advanced Dvorak technique (ADT) (Olander and

Velden 2007). Dvorak techniques rely on data from

geostationary satellites and are not plagued by data gaps

typically seen if relying on polar-orbiting satellites or

aircraft reconnaissance alone.

Because of the usefulness of geostationary data avail-

ability, a variety of othermethods forTCcharacterization—

both intensity and wind structure estimation—have been

developed for geostationary infrared imagery and data

(e.g., Mueller et al. 2006; Kossin et al. 2007; Piñeros
et al. 2008, 2011; Fetanat et al. 2013; Knaff et al. 2015;

Dolling et al. 2016). A number of studies have de-

veloped methods that need an estimate of storm in-

tensity in order to estimate wind structure from infrared

data (Mueller et al. 2006; Kossin et al. 2007; Knaff et al.

2011, 2015). The deviation angle variance (DAV)

technique developed by Piñeros et al. (2008, 2011)

correlates intensity and structure with the gradient in

infrared brightness temperature; the DAV-based wind

radii methods presented in Dolling et al. (2016) use a

multiple linear regression technique. Fetanat et al.

(2013) take advantage of historical hurricane satellite

data (HURSAT) to estimate intensity from feature

analogs—or brightness temperature patterns—in satel-

lite imagery and analogous storms. In addition to in-

frared data inputs, themethods developed inKnaff et al.

(2011, 2015) take advantage of multiple satellite inputs

to estimate the TC wind field, from which wind radii are

estimated.

TC intensity estimation is also possible using passive

microwave sounders, like AMSU. This method takes

advantage of the correlation between a TC’s warm-core

structure and its intensity. Warm-core anomalies are

greatest during peak intensity. Using the retrieved ver-

tical temperature structure from AMSU, estimates of

the minimum surface level pressure and maximum sus-

tained wind speed are possible through the hydrostatic

approximation and assumptions of gradient wind bal-

ance (Kidder et al. 2000). Care has to be taken to ac-

count for the effect of clouds and precipitation on the

AMSU radiances. While AMSU does not have ade-

quate horizontal resolution to estimate realistic wind

structure alone, estimates of the 34-, 50-, and 64-kt wind

radii and maximum wind speed can be made using sta-

tistically based algorithms (Bessho et al. 2006; Demuth

et al. 2006). The performance from this microwave-

sounder-type method is comparable to the Dvorak

technique, but since this method relies on polar-orbiting

sounders, temporal sampling of the TC inner core is

limited.

Knaff et al. (2016) developed methods for estimating

wind radii using routinely available estimates of TC in-

tensity, motion, and location. These inputs, together

with estimates of TC size from IR imagery or model

analyses, are used to createmodifiedRankine vortices—

one for each wind threshold—from which wind radii are

estimated.

Scatterometers are used to measure ocean vector

winds and therefore have some utility in observing TC

scenes. Some examples of spaceborne scatterometers

include the Ku-band NASA Quick Scatterometer

(QuikScat) (Ebuchi et al. 2002), its replacement

Rapid Scatterometer (RapidScat) (Madsen and Long

2016), which was put onboard the International Space

Station, and the ESA/EUMETSAT series of C-band

Advanced Scatterometers (ASCATs) (Figa-Saldana

et al. 2002). A more complete discussion of the limi-

tations of scatterometer observations of TC scenes is

contained in Brennan et al. (2009). Most notably,

scatterometers lose sensitivity at high wind speeds

and are often plagued by rain contamination. How-

ever, scatterometer observations are valuable for

wind radii analyses, with good reliability for 34-kt

radius estimation.

L-band radiometers also have applications in ob-

serving storms. Observations from the Soil Moisture

Active Passive (SMAP) (Fore et al. 2016) and the Soil

Moisture Ocean Salinity (SMOS) (Reul et al. 2012,

2016) missions are useful for TC applications because

the low-frequency observations are uncontaminated

by rain. However, the spatial resolution of these in-

struments limits their performance. For example, SMAP
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observations, with a resolution of 60 km, require addi-

tional scaling if intensity is to be estimated from them.

Yueh et al. (2016) developed SMAP-based TC intensity

estimationmethods after relating theVMAX observed by

the SMAP platform to the true VMAX. Unfortunately,

polar-orbiting satellites like these have poor revisit

times.

c. CYGNSS

The Cyclone Global Navigation Satellite System

(CYGNSS) constellation of eight small satellites pro-

vides unique ocean surface wind speed observations in

all precipitating conditions (Ruf et al. 2016). The re-

trieval uncertainty is anticipated to be 2m s21 for winds

less than 20m s21 and 10% for winds greater than

20ms21. Like SMAP/SMOS, CYGNSS operates at a

sufficiently low frequency to see through the high pre-

cipitation of a TC eyewall and observe the highest sur-

face wind speeds of TCs. Each CYGNSS observatory

has a four-channel bistatic radar receiver for measuring

the GPS L1 (1.575GHz) signal reflected from the sur-

face of Earth. Unlike SMAP/SMOS, CYGNSS obser-

vations will be 253 25km2. Its temporal sampling is also

significantly more frequent. Using a constellation of

eight satellites in low-inclination circular orbit allows for

mean andmedian revisit times over the tropics of 7.2 and

2.8 h, respectively.

While CYGNSS observations will be useful for esti-

mating TC intensity and wind structure, there are some

challenges to overcome with this new observing system.

The sampling patterns are not analogous to the

continuous-swath observations typical of other space-

borne wind-sensing instruments (e.g., SMAP, SMOS,

andASCAT). CYGNSS observes winds along a series of

narrow tracks through the storm; portions of the wind

field between observation tracks are not directly sam-

pled. If for example, a CYGNSS-based intensity esti-

mation method involved simply finding the highest wind

speed observed by CYGNSS through a storm, the in-

tensity estimate might not have good performance if the

gaps in sampling happened to coincide with the location

of maximum winds.

If the CYGNSS mission successfully demonstrates

the value of its data products, a transition to near-

real-time operations is possible in the future, and the

data products developed here could be available to

operational agencies. However, it should be noted

that there are currently no plans for real-time data

processing.

d. Outline

The capabilities of CYGNSS have wide applicability

to TC science and forecasting activities. In this paper,

CYGNSS-based methods are developed for the esti-

mation of a variety of metrics commonly used to de-

scribe TCs: intensity (based on VMAX), the radius of

maximum winds RMAX, and wind radii (R34, R50, and

R64, corresponding to the 34-, 50-, and 64-kt wind radii,

respectively). Section 2 describes the datasets used to

develop and evaluate the method. Section 3 describes

the algorithm. Sections 4 and 5 characterize the perfor-

mance of the CYGNSS-based estimates of intensity and

wind structure and develop quality-control measures of

its reliability. Section 6 discusses these results. Section 7

offers some conclusions and opportunities for future

investigations.

2. Datasets

A large set of realistic simulated observations was

created using the CYGNSS end-to-end simulator

(E2ES) (O’Brien 2014) in order to develop and test the

CYGNSS integrated kinetic energy (IKE) algorithm

prior to launch. The E2ES generates simulated

CYGNSS level 2 wind speed data products from a time-

evolving input wind field. It properly accounts for both

the spatial and temporal peculiarities of the CYGNSS

measurement technique by forward propagating the

orbital trajectories of every satellite in the GPS and

CYGNSS constellations and computing the location of

the specular reflection point on Earth’s surface as a

function of time for every possible GPS/CYGNSS pair.

Additionally, the E2ES properly accounts for the 25-km

spatial resolution of the CYGNSS wind speed mea-

surements by appropriately averaging the input wind

field, and it accounts for its measurement uncertainty by

corrupting the input ‘‘truth’’ winds with noise that is

statistically representative of the expected precision of

the level 2 wind speed retrieval algorithm (Clarizia and

Ruf 2016).

Simulated CYGNSS observations were generated

using real-time wind field analyses and forecasts pro-

duced by the operational version of the Hurricane

Weather Research and Forecasting (HWRF) Model

(Tallapragada et al. 2013) for Atlantic and PacificOcean

storms during 2010, 2011, 2013, and 2014. HWRF wind

fields were generated for storms every 3 h throughout

their life cycles; 0300, 0900, 1500, and 2100UTC data are

the 3-h forecast fields for the previous analysis time.

From each 3-h snapshot from HWRF, CYGNSS ob-

servations were simulated.

After the simulation data were created, a number

of quality-control (QC) metrics were applied in order

to get the best population of test cases to effectively

test the methods presented in this paper. For each

test case, there had to be no land in the smallest
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HWRF domain, a maximum wind speed of at least

17.49m s21 was required, and the center position—

provided by the best-track databases (Chu et al. 2002;

Landsea and Franklin 2013)—had to be within 18
latitude and longitude of the center of the smallest

HWRF domain.

Performance of the algorithm is characterized using

comparisons with simulated truth values derived from

theHWRF data. TrueVMAX is defined as the maximum

surface wind speed in the smallest HWRF domain.

True RMAX is determined from the average location of

the winds falling above the 95th percentile in the

smallest HWRF domain. The true wind radii are de-

termined from the extent of certain strengths (34, 50,

and 64 kt) of wind speed within the smallest HWRF

domain. In addition to the previously mentioned QC,

cases for which the true R34 was located at the edge of

the smallest HWRF domain were also excluded. After

all QC filters are applied, a total of 302 test cases re-

main for developing and testing the algorithm in this

study (details of each case are given in Table A1 in

appendix A). A wide variety of storms are included.

There are 113 cases from the Atlantic and eastern Pa-

cific. There are 189 cases from the western Pacific. The

mean R34 across all cases is 248 km, with a standard

deviation of 99 km. The highest intensity (74m s21) test

cases are found in the Lekima (2013) and Vongfong

(2014) storms.

3. Methodology

a. Parametric wind model

CYGNSS wind speed observation tracks often have

large gaps between them—gaps that may be in areas of

interest (e.g., the location of the maximum wind speed).

To account for the areas that have been missed by

CYGNSS, a method is developed that effectively in-

terpolates between the available observations using a

parametric model as a constraint on the assumed wind

speed distribution.

The parametric wind model used has roots in the

method developed in Emanuel and Rotunno (2011) and

was used in a previous study by Morris and Ruf (2017).

In Emanuel and Rotunno (2011), the parametric wind

profile most applicable to the region inside of approxi-

mately 2.5RMAX is given by

V(r)5

2r R
m:p

V
m:p

1
1

2
fR2

m:p

� �
R2

m:p 1 r2
2

fr

2
, (1)

where Rm:p is the radius of maximum winds, Vm:p is the

maximum wind speed, r is the radial distance from

the storm center, and f is the Coriolis parameter. The

Coriolis parameter is determined by the storm center

location coordinates and is not an independent

parameter to be estimated from the CYGNSS

observations.

As discussed in Chavas et al. (2015), the outer wind

radii tend to be underestimated by Eq. (1). To address

this tendency, two additional parameters have been

added to the model to regulate the rate of decay of the

wind speed at large radii. The model is given by

V(r)5

2r R
m:p

V
m:p

1
1

2
fR2

m:p

� �
R2

m:p 1 arb
2

fr

2
, (2)

where the two additional parameters are a and b. Ex-

amples of the wind speed radial dependence specified by

Eq. (2) are shown in Fig. 1.

Of the four model parameters—Rm:p, Vm:p, a, and

b—a can be solved from the other three by requiring

that the maximum value of V(r) be equal to the pa-

rameter Vm:p. The solution for a is outlined in appendix

B. This effectively reduces Eq. (2) to a three-parameter

model. As shown in Fig. 1, the b parameter allows for

adjustment of the radial decay rate of the wind speed in

the outer storm region. Larger values of b correspond

to a faster radial decay. The model is fit to the CYGNSS

wind speed data by adjusting the three parameters,Rm:p,

Vm:p, and b, to minimize the sum-squared difference

FIG. 1. An example of the wind speed relationship from the

parametric model in Eq. (2) with three different ‘‘b’’ parameters

used; Vm.p 5 50m s21, Rm.p 5 75 km, and the center position lati-

tude is 158.
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between the model and all CYGNSS observations

within a specified region near the storm center.

b. Parametric retrieval algorithm

A flow diagram of the parametric model retrieval

algorithm is shown in Fig. 2. First, depending on the

basin in question, an initial RLimit—the maximum ra-

dial distance from the storm center over which to draw

an initial set of CYGNSS observations from—is set.

For the Atlantic and eastern Pacific storms, the initial

RLimit 5 200 km. For the western Pacific storms, the

initial RLimit 5 300 km, as these storms are generally

larger (Chan and Chan 2012; Chavas and Emanuel

2010; Knaff et al. 2014; Sampson et al. 2016). The al-

gorithm requires two sets of inputs: 1) CYGNSS ob-

servations and 2) the center position of the storm. The

amount of CYGNSS observation input also depends on

the type of metric being estimated. For the wind radii

estimates, which are quadrant dependent, only obser-

vations within a particular quadrant are used. If no

observations are available in a quadrant, wind radii are

not estimated there. However, observations available

across the entire storm are used for estimates of VMAX

and RMAX.

Once the initial set of CYGNSS wind speed data is

gathered, it is input into the parametric wind model al-

gorithm. In this algorithm, the free parameters Rm:p,

Vm:p, and b are solved using an iterative least squares

estimator. The procedures behind the parametric wind

model algorithm are outlined in appendix C. These es-

timates are used to create a best-fit parametric wind

model to the available observations. An example of this

process is shown in Fig. 3. In Fig. 3a, the HWRF wind

field from which the CYGNSS observations are derived

is shown. In Fig. 3b, the simulated CYGNSS observa-

tions are shown for this test case. In Fig. 3c, an example

of the final best-fit parametric wind model over all

quadrants is shown. The model effectively interpolates

between the gaps in the track, which are shown in

Fig. 3b. The parametric model is used to derive VMAX

and RMAX.

Figure 3c also highlights another aspect of the algo-

rithm flow shown in Fig. 2. Initially, observations within

300 km of the storm center are used. However, after the

initial run of the algorithm, if the estimate of R34.P (the

parametric model estimate of R34) is different than

300 km, then the algorithm is repeated until RLimit and

R34.P converge. In the test case shown in Fig. 3, fewer

observations are used in the final iteration of the algo-

rithm because the final value ofRLimit after convergence

is less than 300 km.

Once the best-fit parametric model solution is

attained, the metrics of interest can be derived from it.

The parametricVMAX is defined as themaximum ofV(r)

and the parametric RMAX is defined as that r where the

parametric VMAX occurs. The parametric wind radii are

defined by the radius at the wind strength in question in

the parametric model.

c. Three- versus two-parameter model impacts

In Fig. 4, the parametric model algorithm process is

examined for a particular northeast quadrant test case.

In this example, however, the results from using the two-

parameter model given by Eq. (1) are shown in addition

to those from using the three-parametermodel [Eq. (2)].

In this test case, the simulated CYGNSS observations

suggest that the decay in wind speed is slower than the

original two-parameter model would fit. The estimates

FIG. 2. A flow diagram that outlines the steps of the CYGNSS TC surface wind speed structure

and intensity product algorithms.
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of the outer wind radii are improved by use of a model

with a more flexible radial decay.

d. Parametric scaling

There are two main drivers for this algorithm design:

measurement noise and variable coverage. The variable

nature of coverage from the CYGNSS constellation

means that sometimes the maximum winds are not

sampled directly. The use of a parametric wind model

helps to overcome these two factors. However, after the

model is fit to the available observations, parametric

scaling—developed below—is needed to determine the

final metrics. For a number of reasons, estimates of the

intensity, radius of maximum wind, and wind radii de-

rived directly from the parametric model function V(r)

are found to have characteristic scale and bias difference

from the actual values. This is true whether the para-

metric model is derived only from CYGNSS observa-

tions or is fit to the complete grid of HWRF wind

samples. To elaborate further on this, even if perfect

noise-free observations existed, the lowest observations

would balance the highest ones, creating a bias in esti-

mates derived directly from the best-fit parametric

model. Another bias-inducing factor to consider is that

CYGNSS data, at 25-km resolution, spatially filter some

TC features. Scaling factors derived here help to correct

for the characteristic bias and scale differences caused

by these spatial filter–related factors as well as overcome

limitations from using a simple parametric model.

The scale and bias differences are compensated by

scaling the values derived directly from the parametric

model using a power series transformation. The co-

efficients in the power series are determined as follows:

Best-fit parametric models are determined for all storm

cases using the complete grid of HWRF wind samples.

In each case, estimates of the intensity Vmax:p, radius of

maximum wind Rmax:p, and wind radii (R34:p, R50:p, and

R64:p) are derived directly from the parametric model

and compared with the true values determined from

the actual HWRF winds. A power series is fit to the

comparison that translates the direct parametric values

to scaled values that are closest, in a least squares sense,

to the true values. A first-order power series is found to

be sufficient for scaling the intensity and the three wind

radii estimates, and a third-order power series is found

to be necessary for scaling the estimate of the radius of

maximum wind. The scaling relationships have the

form

V
max:scaled-p

5 a
0
1 a

1
V

max:p
, (3a)

R
max:scaled-p

5 a
0
1 a

1
R

max:p
1 a

2
R2

max:p 1 a
3
R3

max:p, (3b)

R
34:max:scaled-p

5 a
0
1 a

1
R

34:p
, (3c)

FIG. 3. (a) HWRF wind speed field for Vongfong at 0300 UTC 9

Oct 2014, (b) simulated CYGNSS wind speed observations for (a),

and (c) the parametric model algorithm fit for this test case.
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R
50:max:scaled-p

5 a
0
1 a

1
R

50:p
, and (3d)

R
64:max:scaled-p

5 a
0
1 a

1
R

64:p
. (3e)

The coefficients used in this study are given in Table 1.

In summary, TC metrics are first derived directly from

the best-fit parametric model. The metrics derived di-

rectly from the best-fit parametric model are more

representative of the mean value of those metrics. So,

for example, the wind radii derived from the parametric

model represent something closer to a mean extent

rather than the maximum extent (i.e., the operational

metric). To estimate the maximum extent, Eqs. (3c)–(3e)

are applied. All metrics are corrected using Eqs. (3) and

the coefficients in Table 1 to estimate the true TCmetrics.

These final estimates will henceforth be referred to as the

scaled-parametric metrics.

4. Initial results

a. Performance without quality control

To illustrate the effect of applying the scaling factors

described above, histograms of error are plotted in Fig. 5

for each of the TC metrics. These histograms include all

storm cases, with no QC filters related to algorithm

performance applied. Both the parametric and scaled-

parametric metrics are plotted to show that the scaling

alleviates some of the larger biases in the parametric

estimates. For example, there is a clear overall bias in

the parametric VMAX, but after the scaling correction is

applied, the mean error is close to zero. The mean and

standard deviation of each population of errors are re-

ported in Table 2. For some metrics, the scaling factor

improves performance much more than for others. The

inner wind radii R50 and R64 have very small scaling

factors; their performance improves by a small amount.

The standard deviations reported in Table 2 show that

RMAX is the only metric where the scaling factors affect

the root-mean-square error (RMSE) by a significant

amount. The RMSE can be further improved by ap-

plying QC filters. These filters are developed below.

TABLE 1. Coefficients used for translation from the parametric

metrics to the scaled-parametric metrics, assuming the form of

Eq. (3).

Metric a0 a1 a2 a3

VMAX (m s21) 5.605 266 1.131 274 0 0

RMAX (km) 51.951 488 0.228 911 0.003 682 20.000 006

R34 (km) 42.564 232 1.098 006 0 0

R50 (km) 11.904 758 1.006 752 0 0

R64 (km) 9.444 089 0.975 245 0 0

FIG. 4. (a) HWRFwind speed field for Soulik at 0300UTC 11 Jul

2013, (b) simulated CYGNSS wind speed observations for (a) with

the NE quadrant (cornered off by red lines) currently being con-

sidered, and (c) the parametric model algorithm fit for this NE

quadrant test case from which the NE quadrant wind radii are

solved.
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FIG. 5. Histograms of error, normalized to percentages, before QC is applied in all parametric and scaled-parametric

metrics. Error is defined here as true 2 estimated.
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b. Sensitivity to storm center location error

One of the required inputs to the TC metric esti-

mator algorithm is the location of the storm center.

During algorithm development, the best-track data-

base is used for storm center information, and storm

center data sources have yet to be finalized for on-orbit

data processing. Potential sources of center in-

formation include the working best track, interpolation

from the forecast track or an objective position location

algorithm such as that from the Automated Rotational

Center Hurricane Eye Retrieval (ARCHER) (Wimmers

and Velden 2010).

Sensitivity experiments were performed to assess the

impact of center location error on the metrics. In these

experiments, the algorithm was executed multiple times

using all available test cases, each time perturbing the

center position latitude by an increasing amount. After

performing some quality control (described in the fol-

lowing section), the error due to latitude offset was

calculated by decomposing it from the overall error in

the TC metric estimate. Specifically, the RMSE due to

center location offset is given by

RMSE
off
(x)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE

total
(x)2 2RMSE2

offx50

q
, (4)

where RMSEtotal is the total RMSE for a certain offset x,

and RMSEoffx50
is the RMSEwith no latitude offset. The

results are shown in Fig. 6 for VMAX and RMAX, the

metrics that are derived using observations from all four

quadrants, and in Fig. 7 for wind radii, the metrics de-

rived in individual quadrants. For the wind radii, the

northeast quadrant was used. The results are similar in

other quadrants.

The results show a consistent monotonic increase in

error with increasing uncertainty in the storm center

location for all TC metrics. For example, a storm center

offset of 55 km introduces an RMSE in VMAX of

4.7m s21; in RMAX of 12km; and in R64, R50, and R34 of

39, 43, and 48km, respectively. In terms of relative error

(relative to the mean value of each TC metric), these

errors correspond to 12% forVMAX; 13% forRMAX; and

32%, 28%, and 19% for R64, R50, and R34.

c. Sensitivity to CYGNSS coverage

The spatial distribution of observations, or coverage,

by CYGNSS of the TC wind field will affect the quality

of its retrieval of the TC metrics. The sensitivity of the

retrievals to coverage is illustrated in Figs. 8 and 9.

TABLE 2. Mean and standard deviation of the error plotted in Fig. 5 for each parametric and scaled-parametric metric.

Mean Standard deviation

Metric Parametric Scaled parametric Parametric Scaled parametric

VMAX (m s21) 10.4 0.8 6.9 7.2

RMAX (km) 1.7 26.4 54.0 41.7

R34 (km) 57.4 25.9 55.6 57.3

R50 (km) 11.9 21.1 33.4 33.5

R64 (km) 5.7 20.6 27.7 27.2

FIG. 6. The additional error on average to expect from storm center

offsets (here, only in latitude) for (a) VMAX and (b) RMAX.
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Different sampling characteristics are considered and

different regions are examined for different TC metrics.

Figure 8 shows the sensitivity of VMAX (Fig. 8a) and

RMAX (Fig. 8b) performance to the number of CYGNSS

samples, or observations, within 100km of the storm

center. Other thresholds were examined, and 100 km

provided the best sensitivity for VMAX and RMAX. In

Fig. 8, the root-mean-square difference (RMSD) be-

tween the HWRF and CYGNSS values is shown for

different populations of storm cases. The population

used for the RMSD calculation is selected based on the

coverage threshold attained (defined on the x axis), or

the number of observations within 100 km of the storm

center in a test case. The x axis in the figure is the

threshold—the (minimum) number of observations re-

quired within 100 km. For example, at an x-axis value of

10, the population of test cases that went into the RMSD

calculation at this point all had at least 10 CYGNSS

observations within 100 km of the storm center. Cases

with poor coverage near the center of the storm drive

theRMSDup; these cases are included in the population

at low sample number thresholds. As the threshold is

increased, more and more undersampled cases are

thrown out, and the performance improves. The key

takeaway from these results is that an adequate number

of CYGNSS observations are needed within the inner

core in order to make a reliable estimate of inner-core

metrics likeVMAX andRMAX. Therefore, quality control

can and will be derived from the coverage statistics in

this region for the VMAX and RMAX metrics.

Figure 9 shows the results of a similar sensitivity ex-

periment for the wind radii. Here, a different sampling

characteristic was found to be more indicative of the

performance. The number of CYGNSS samples be-

tween 100 km and R34 was used. As above with VMAX

and RMAX, as the minimum threshold for the number of

FIG. 7. The additional error on average to expect from storm

center offsets (here, only in latitude) for wind radii. This analysis is

based on the cases available in the NE quadrant.

FIG. 8. (a) The RMSD between the HWRF- and CYGNSS-

derived VMAX depending on the QC filter threshold used. The QC

keeps test cases that have a number of observations within 100 km

from the storm center above the sample number threshold plotted

on the x axis. (b) As in (a), but for RMAX. (c) The fraction of the

original test case estimates left that are used to derive the RMSD

in (a) and (b).
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samples increases, the performance of the wind radii

estimates improves (see Fig. 9a). Of course, the more

stringent the threshold is, the fewer cases remain (see

Fig. 9b).

d. Quality-control test procedures

QC filters are derived using the results of the sensi-

tivity experiments. The filters are intended to identify

CYGNSS sampling conditions under which the TC

metric estimates are of acceptable quality. However, the

filters should not be so stringent that they eliminate too

large a fraction of the possible storm cases. For estimates

of VMAX and RMAX, a sampling threshold test is used

given by

num
obs100

$N , (5)

where numobs100 is the number of observations within

100 km of the storm center for a particular storm case,

and N is the filter threshold. For this study, we choose

N 5 20 as a good balance between high algorithm per-

formance and not filtering out toomany storm cases. For

estimates of wind radii, a different sampling test is used

given by

num
obs1002R34

$M , (6)

where numobs1002R34
is the number of observations be-

tween 100 kmof the storm center andR34 for a particular

quadrant, andM is the filter threshold. For this study, we

choose M 5 30. Higher values produce only marginal

improvement in performance while eliminating a sig-

nificant fraction of the storm cases.

5. Final results

Figure 10 shows the histograms of error for all TC

metrics after the QC filters described above have been

applied. The original histogram data shown in Fig. 5 are

included for convenience. The means and standard

deviations derived from the Fig. 10 cases are listed in

Table 3. Overall, the QC filters remove the egregious

outliers while retaining most of the higher-quality es-

timates. As a result, the RMSE in the metrics is im-

proved. Additionally, the bias in the estimates remains

small after QC filters are applied.

6. Discussion

The methods presented here enable CYGNSS-based

estimates ofVMAX,RMAX, and wind radii. The estimates

require a sufficient number of observations in the ap-

propriate regions of the storm; this requirement is met

using appropriate quality-control filters. For example,

data availability within the inner core best predicts the

quality of the inner-core metrics, namely, VMAX and

RMAX. Wind radii estimates require sufficient sampling

in an annular region outside of the inner core of the

storm, between 100 km and R34, and the sampling is

quadrant dependent.

The results presented here assume that all eight

microsatellites are available to sample the winds. If a

FIG. 9. (a) The RMSD between the HWRF- and CYGNSS-

derived wind radii depending on the QC applied. The QC keeps

test cases that have a number of observations outside 100 km from

the storm center (but within the estimate of R34) above the sample

number threshold plotted on the x axis. (b) The fraction of the

original test case estimates left that are used to derive the RMSD in

(a).
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FIG. 10. Histograms of error, normalized to percentages, in all parametric, scaled-parametric, and QCed

scaled-parametric metrics. Error is defined here as true 2 estimated.
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failure were to occur, the number of observations

available for retrievals might be affected. To illustrate

the effect of losing spacecraft (s/c), Fig. 11 shows the

cumulative density function (CDF) of the number of s/c

used by all test cases after the quality-control filter is

applied. For example,;81% of the test cases use six or

fewer s/c to estimate VMAX and RMAX, and ;92% use

six or fewer to estimate the wind radii. Note that wind

radii estimates are more likely to have fewer s/c in-

volved than for estimates of VMAX and RMAX because

the wind radii estimates are quadrant limited. The de-

crease in the CDF when fewer s/c are available gives an

indication of the impact of losing one or more of them.

For example, the decrease fromCDF(6 s/c) to CDF(5 s/c)

describes the fraction of test cases using six s/c for

which estimates would not have been possible if one s/c

were lost. If the decrease from CDF(N) to CDF(N2 1)

is averaged over all N 5 2–8, this gives an estimate of

the fraction of all test cases for which estimates would

not have been possible if one s/c were lost. For the CDF

corresponding to VMAX and RMAX, the result is an

average decrease by 14%. For the case of two s/c lost

[i.e., a decrease from CDF(N) to CDF(N 2 2)], the

average decrease is 29%, and it is 44% for a loss of

three s/c. For estimates of the wind radii, the corre-

sponding decreases are comparable. Note that these

are overall statistical impacts on s/c loss, and the impact

on any individual test case would require a more de-

tailed sensitivity analysis.

Another potential factor in performance is the type

and location of the storm. Figure 12 examines the

impact that intensity has on the performance of the

VMAX and RMAX estimates. Here, the test cases are

separated into those that, according toHWRF, have an

intensity estimate either below or above 33m s21—

differentiating between tropical storm and hurricane

strength. Figure 12a shows that the spread in error is

slightly larger in the stronger storms. Figure 12b shows

that the spread in RMAX error is larger for tropical

storms. Both of these performance distinctions make

sense considering that, in both instances, the spread is

larger for the population with larger values of the

metric in question.

Figure 13 compares the performance of all TCmetrics

depending on the basin location of the storm. The error

plotted is withQC filtering. Notably, the spread inVMAX

error is larger in the western Pacific test cases, which

makes sense as these cases tend to have higher intensity.

Another interesting takeaway from Fig. 13 is shown in

Fig. 13c; here, the bias in Atlantic and eastern Pacific

RMAX error is more pronounced than that in the western

Pacific. Basin-specific RMAX performance will be ex-

amined further postlaunch with CYGNSS data in order

to determine whether different scaling factors are re-

quired for different basins. In summary, assuming that

these simulations are close to the true or real data fields,

Figs. 12 and 13 illustrate situations where one might

expect better or worse performance.

TABLE 3.Mean and standard deviation of the error plotted in Fig. 10 for each parametric and scaled-parametric metric as well as theQCed

scaled-parametric metrics.

Mean Standard deviation

Metric Parametric Scaled parametric Post-QC Parametric Scaled parametric Post-QC

VMAX (m s21) 10.4 0.8 20.4 6.9 7.2 4.3

RMAX (km) 1.7 26.4 20.04 54.0 41.7 17.4

R34 (km) 57.4 25.9 24.6 55.6 57.3 41.3

R50 (km) 11.9 21.1 2.1 33.4 33.5 21.6

R64 (km) 5.7 20.6 1.6 27.7 27.2 16.8

FIG. 11. Cumulative density function of number of s/c used to

estimateVMAX andRMAX (solid black line) and wind radii (dashed

blue line) for all test cases after QC has been applied.
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7. Conclusions

CYGNSS will allow for a unique opportunity to esti-

mate certain metrics of tropical cyclones that are typi-

cally quite challenging to estimate with other platforms.

Since CYGNSS observations consist of collections of

tracks rather than complete swaths, new estimation

methods have been developed that effectively in-

terpolate between observations in order to produce the

TC metric estimates.

This study uses a mission simulator that reproduces

realistic sampling patterns to be expected with CYGNSS.

Sampling patterns are important to consider, as the

quality of the TCmetric estimates can depend strongly on

them. Given good coverage, the methodology presented

here enablesVMAX,RMAX, andwind radii estimates to be

made from two inputs: 1) CYGNSS observations and 2)

the storm center location. Quadrant-specific inputs are

used for wind radii estimates. Observations across all

quadrants are used to estimate VMAX and RMAX. Future

work includes determining if quadrant-dependent (or

possibly other more complicated) methods could be used

to account for asymmetries in order to improve VMAX

and RMAX methods.

Development of the methods and applications de-

scribed in this paper, as well as related areas of research

(e.g., center fixing), are ongoing. Future work also in-

cludes calibration and validation of the TC metric esti-

mates made from actual on-orbit CYGNSS data.

Calibration might, for example, include retuning of the

scaled-parametric relationships described in section 3d

or revision of the QC filter thresholds. Validation will

follow from comparisons with coincident ground truth

sources such as airborne reconnaissance underflights. If

skillful, CYGNSS-based wind radii estimates could be

included in the objective best-trackmethodology used at

JTWC and NHC (Sampson et al. 2017); the small-biased

CYGNSS-based method presented here—as de-

termined from simulated observations—could be com-

plementary to the other methods, which are typically

high biased. Finally, while these methods were de-

veloped with CYGNSS in mind, it is possible that this

methodology could also be applied to other types of

observations, in particular those for which gaps in spatial

sampling also exist.
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APPENDIX A

Summary of Storms Used

Table A1 provides a summary of all the storms used in

this study.

FIG. 12. Histograms, normalized to show percentages, of the QCed scaled-parametric VMAX and RMAX de-

pending on the HWRFVMAX threshold attained. Weaker storms (VMAX, 33m s21) are plotted in solid light blue.

Stronger storms (VMAX $ 33m s21) are plotted in dashed dark red.
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FIG. 13. Histograms, normalized to show percentages, of the QCed scaled-parametric metrics depending on the

test case basin. Storms from the Atlantic and east Pacific basins are plotted in solid light green. Storms from the

western Pacific basin are plotted in dashed dark blue.
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APPENDIX B

Derivation of Solution for Parameter a in Eq. (2)

The solution for parameter a starts with Eq. (2), pre-

viously described in section 3a:

V(r)

2r R
m:p

V
m:p

1
1

2
fR2

m:p

� �
R2

m:p 1 arb
2

fr

2
. (B1)

To solve for the parameter a, which forces themaximum

value of Eq. (B1) to be equal to parameter Vm:p, the

derivative of Eq. (B1) with respect to r is found given by

›V(r)

›r
5

2r R
m:p

V
m:p

1
1

2
fR2

m:p

� �
[R2

m:p 2 a(b2 1)rb]

(R2
m:p 1 arb)2

2
fr

2
.

(B2)

After setting ›V(r)/›r5 0, solving for arb gives

TABLE A1. A summary of all of the storms used in this study, with the storm name, the number of cases for that particular storm, the

maximumwind speedVMAX, the storm center latitude and longitude at the point in time corresponding to theVMAX case, and the year for

each storm.

Storm name

No. of storm

test cases VMAX (m s21)

Storm center

lat (8N)

Storm center

lon (8E)
Storm test

case year

Danielle 11 54 26.8 300.3 2010

Estelle 4 27 17.3 250.8 2010

Frank 2 40 17.7 250.6 2010

Igor 13 66 17.6 310.7 2010

Julia 7 59 17.7 327.8 2010

Adrian 6 63 14.5 254.7 2011

Bret 1 24 29.8 284 2011

Calvin 3 36 16.7 250.9 2011

Dora 2 41 19.4 250.6 2011

Eugene 14 61 15.7 245.3 2011

Fernanda 5 28 14.7 217.3 2011

Gert 2 24 37.9 303 2011

Greg 4 36 18.5 248.6 2011

Hilary 12 59 17.1 250.6 2011

Katia 15 55 27 294.1 2011

Maria 4 33 33.7 293.1 2011

Ophelia 4 50 24 296.9 2011

Philippe 4 25 22.9 314.8 2011

Yagi 3 26 28.6 136.5 2013

Leepi 1 21 19.6 126.1 2013

Soulik 14 66 21.3 135.3 2013

Eleven 2 72 15.7 132.7 2013

Trami 2 28 19.9 128.3 2013

Man-yi 1 24 25.8 136 2013

Usagi 5 57 17.9 127.6 2013

Pabuk 12 46 29.4 139 2013

Wutip 1 27 16.4 114.1 2013

Fitow 13 47 24.5 127.3 2013

Danas 8 47 22.8 133.4 2013

Nari 1 50 15.3 114.2 2013

Francisco 20 71 17.8 137.8 2013

Lekima 12 74 19 150.9 2013

Krosa 3 31 17 127.6 2013

Tapah 3 39 14.5 147.5 2014

Eight 8 62 18.1 132.1 2014

Nine 3 47 16.6 115.4 2014

Matmo 10 45 13.5 129.3 2014

Eleven 28 72 15.7 132.7 2014

Fengshen 5 28 29.5 136.6 2014

Fifteen 2 24 13.6 130.8 2014

Kammuri 7 28 23 145.7 2014

Phanfone 11 59 20.2 137.6 2014

Vongfong 14 74 18 131.9 2014
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where, for convenience and ease of reading, we define

c
1
52

f

2
, (B4)

c
2
52fR2

m:p 2 2R
m:p

V
m:p

(b2 1)2 fR
m:p

(b2 1), (B5)

and

c
3
52

f

2
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1 fR4
m:p. (B6)

The negative root in Eq. (B3), which we define as cQ,

gives physical results and will be used for the re-

mainder of the solution. Next, cQ is used to substitute

in for both arb and r in Eq. (B1), and V(r) is set equal

to Vm:p, which gives a solution for a in terms of Vm:p,

Rm:p, and cQ as

a5
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where, for ease of readability, we define
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APPENDIX C

Parametric Wind Model Algorithm Procedures

The parametric wind model algorithm is embedded in

the outlined procedures in Fig. 2. The algorithm consists

of two main parts, with the ultimate goal of solving for

the three free parameters in Eq. (2):Vm:p,Rm:p, and b. To

start, first guesses for Vm:p and Rm:p are determined,

assuming a5 1 and b5 2, as the original model suggests.

Second, a series of iterative steps take place in order to

minimize the difference between the parametric wind

model estimate of wind speed and the L2 wind speed

observations. In brief, after a first guess for parameters is

made, the model parameters are solved using an itera-

tive, least squares fit of the model to the CYGNSS

observations.

The iterative routine consists of a number of steps:

1) Calculate Vest, which is the estimate of the radial

profile of winds according to the parametric wind

model, at all observation points, using the current

estimate ofRm:p,Vm:p, a, and bwith Eq. (2). Location

is defined by r, a vector of radial distances corre-

sponding to the location of CYGNSS observations

with respect to the center of the storm.

2) Calculate ›V5Vest 2Vobs, where Vobs is the vector

consisting of the L2 surface wind speed observations

collected at certain radial points defined by r.

3) Populate the Jacobian matrix for all free parameters,

defined here as

J5

2
6666666664

›V(r
1
)

›V
m:p

›V(r
1
)

›b

›V(r
1
)

›R
m:p

..

. ..
. ..

.

›V(r
N
)

›V
m:p

›V(r
N
)

›b

›V(r
N
)

›R
m:p

3
7777777775
,

where N is the number of CYGNSS observations,

or points in r. The derivatives are approximated

numerically by perturbing the parametric model

by small amounts, separately, for each free

parameter.

4) Perform the generalized matrix inversion, defined as

›x5 (JTJ1R)21JT›V, where R is a regularization

matrix, used for numerical stability, defined as

R5 g

2
4 1 0 0

0 1 0

0 0 1

3
5 ,

with the amount of regularization dependent on the

value of the relaxation parameter g.

5) Update the estimate of the free parameters with

x5 x1 ›x ,

where the state vector x is filled with the estimates of

the free variables as defined by

x5

2
64
V

m:p

b

R
m:p

3
75,

with a corresponding change vector,

›x5

2
64
›V

m:p

›b

›R
m:p

3
75.
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6) Calculate a, with the constraint that Vm:p 5 the

maximum value of the parametric wind model. See

details in appendix B.

7) Update ›V5Vest 2Vobs using the latest parametric

wind model estimate.

8) Check to make sure parameters are positive, and

force them positive if necessary.

9) Iterate steps 1–8 until the problem has converged.

The entire iterative routine outlined above in steps 1–9

is potentially repeated as well. The population of

CYGNSS observations that are used in the parametric

wind model fit are the samples lying within a distance

RLimit of the storm center. The RLimit is initially set to

200 km forNorthAtlantic and eastern Pacific storms and

300 km for western Pacific storms. After the first itera-

tion, the estimate of R34, given the parametric model

R34.P is compared with RLimit. If they are not sufficiently

close, currently defined as being within 10km, then

RLimit is set equal to R34.P, a new population of obser-

vations is selected, and the processes outlined above are

repeated. Eventually (in practice, within just a few it-

erations), the values of R34.P and RLimit converge, and

the parametric model estimation is complete. Results

from the last iteration are used for the products.
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