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Abstract— A novel metric for detecting coherence in global
navigation satellite system reflectometry (GNSS-R) signals is
presented and evaluated. It applies the Von Neumann information
entropy metric for density matrices, a powerful indicator of
the degree of mixing between states, coherent and incoherent,
of the scene under investigation. The metric is applied to a
set of raw IF data acquired by the cyclone global navigation
satellite system (CYGNSS) observatories over Lake Okeechobee
FL, in order to test the sensitivity of the entropy to different
land cover types, including wetlands and open water. Visual
comparison of results with Sentinel-1 images provides a first step
in the validation of the effectiveness of entropy in detecting the
presence of water covered by emergent vegetation. In addition,
the entropy-based metric could be implemented on future space-
based GNSS-R receivers to adapt the incoherent integration times
to the observed scene, thus achieving an improvement in along-
track resolution.

Index Terms— Bistatic scattering, coherency, cyclone global
navigation satellite system (CYGNSS), eigenvalue decomposi-
tion, entropy, global navigation satellite system reflectometry
(GNSS-R).

I. INTRODUCTION

A GROWING number of Earth monitoring applications
are developing around the concept of global navigation

satellite system reflectometry (GNSS-R). Originally proposed
for ocean altimetry [1] and successfully applied to ocean
wind speed retrieval from airborne and spaceborne receiving
systems [2]–[4], GNSS-R was proven to be an innovative
remote sensing technique for studying land surfaces [5]–[8],
showing responsiveness to a variety of geophysical parameters,
such as soil moisture, ice/snow, freeze/thaw, biomass, and
wetlands. Sensitivity to these variables has also been recently
confirmed by several experimental campaigns from ground-
based, airborne, and spaceborne platforms [9]–[16], showing
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that bistatic scattering from land can be dominated by a signif-
icant coherent component, depending on the electromagnetic
response of the observed surface to the incoming waveform.
Coherent reflections are often observed in the presence of
calm waters such as rivers and lakes, even of small size (sub-
kilometer) entering the GNSS-R footprint. Inundated areas
under varying vegetation cover, such as wetlands, also produce
specular scattering that is much stronger than the diffuse scat-
tering from surrounding dry lands. When coherent reflection
is dominant, the area of collection is approximately equal to
the first Fresnel zone (FFZ), much smaller than the area of
collection corresponding to diffuse scattering. Consequently,
the spatial resolution is higher than the nominal 25 km along
track of the ocean surface wind speed product that the most
recent GNSS-R mission, CYGNSS, routinely provides [4]. The
aforementioned characteristics, i.e., high power and relatively
fine spatial resolution, are attractive for remote sensing and
make the detection of coherent reflections in GNSS-R an
essential task that is paving the way to novel applications,
including global inland water mapping, floods detection, and
wetlands monitoring [17]–[19]. More specifically, monitoring
the dynamics and extent of wetlands, which has driven this
research work, represents a challenge due to their intrinsic het-
erogeneity. Wetlands are complex transitional zones between
upland and aquatic ecosystems and play an essential role in
the global hydrological and biogeochemical cycles. Wetlands
are often characterized by the presence of open water, soil,
and water covered by herbaceous and woody vegetation.
They are also highly dynamic, with water level and water
extent that may change over short (months) to long (decades)
time scales. Some wetlands are covered by water throughout
the year, whereas others show the presence of water only
seasonally, due to water evaporation during the dry season.
Because wetlands can be found at all latitudes, from tropical
to polar regions, soil and vegetation characteristics can also
vary across different wetlands. Vegetation can be dominated by
herbaceous plants, shrubs, or trees with varying height above
the water surface, forming a rich, highly dynamic, ecosystem.
Due to these characteristics, it is desirable to map location,
water level, water extent, and vegetation and soil properties
routinely and with high frequency. GNSS-R provides a unique
opportunity to capture the dynamic of this ecosystem with
high spatial and temporal sampling, even in consideration of
the increasing number of GNSS platforms.

Several previous works have proposed methods for detecting
the degree of coherence in reflected GNSS signals, most of
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which have been developed for sea ice detection and carrier-
phase altimetry. It is possible to group them into two categories
depending on the GNSS-R observables used. The first group
includes algorithms exploiting the amplitude of delay-Doppler
map (DDM). They are based either on signal-to-noise ratio
(SNR) [20], [21], on trailing edge slope (TES) [13], [22],
matched filter approach [13], or on the spread of power
in delay and Doppler 2-D domain [13], [23], [24]. These
algorithms use the Level-1 data, which contains the real-valued
DDM powers recorded after noncoherent integration. The
second group takes advantage of both the amplitude and phase
of DDMs, obtained after coherent integration of the Raw-
IF data. As a result, these algorithms are able to provide a
resolution improvement in the satellite along-track direction.
The detector presented in [25] is based on the normalized
coherent sum of the 1-ms complex DDM peak values over a
time window. Instead, Roesler et al. [26] calculated circular
statistics i.e., circular length and circular kurtosis from vari-
ations of the specular point phase, as indicators of GNSS-R
signal coherence.

In this article, a new coherence metric, falling in the second
group, and built upon the previous work in [27], is introduced
and evaluated. The metric exploits the concept of entropy as a
measure of the amount of information contained in the eigen-
values of the correlation matrix of the complex zero-Doppler
delay waveforms. Besides the application to wetlands, the idea
can be applied more widely to detect signal coherence on land,
ice, or water surfaces.

This article is organized as follows. Section II provides an
overview of bistatic scattering over land, with its coherent and
incoherent components. Section III describes the signal model
and the entropy-based coherence metric. Sections IV and V
provide a general description of the site selected for algo-
rithm validation and the datasets considered in this study and
results, respectively. Finally, Section VI outlines conclusions
and further research perspectives.

II. GNSS-R SCATTERING OVER LAND

In contrast to ocean where bistatic reflections are mostly
incoherent, the reflected GNSS signals over land surfaces com-
prise typically a combination of coherent and incoherent com-
ponents in different proportions. Thus, as formalized in [28],
the total received mean power obtained by cross-correlating
the reflected signal with a replica of the transmitted signal
over a range of time delays, τ , and Doppler frequencies, f ,
is given as〈|Y (τ, f )|2〉 = 〈|Ycoh(τ, f )|2〉 + 〈|Yinc(τ, f )|2〉. (1)

The weight of each component depends on multiple factors
related to the properties of the reflecting surface, including its
permittivity [29], topography [30], [31], and amount and distri-
bution of water and vegetation. While the dielectric properties
have an impact on the magnitude of the reflected power, the
topographic and land cover features are mainly responsible
for the type of scattering that takes place on the surface,
as explained further next. In addition, the configuration of the
system, particularly the receiver altitude, plays a key role on

the received scattering. As shown by Martin et al. [32] using
experimental data, the ratio between coherent and incoherent
components for a spaceborne GNSS-R system is lower than
that from an airborne or a ground-based platform.

With regard to the coherent component, it originates from
the mirror-like reflection of the signal off the Earth’s surface.
This specular scattering occurs on surfaces that can be con-
sidered smooth compared to the wavelength λ. A measure
of the effective surface roughness is given by the Rayleigh
parameter [33]

Ra = 2π
〈
�h2

〉1/2
cos θ/λ (2)

where �h is the surface height with respect to the mean sea
level and θ is the incidence angle. From (2), it follows that
coherence is maintained for small-to-moderate values of the
Rayleigh parameter (Ra ≤ 1). With 1.575-GHz center fre-
quency signals, this condition is verified for surface rms height
not exceeding 3–5 cm (depending on incidence angle) [34],
[35]. This requirement, over land, is mainly met by inland
water bodies such as lakes, rivers, and wetlands, without
significant flow. In this case, the surface roughness is primarily
due to wind-driven waves. The range of wind speed values to
which the coherent reflection will be sensitive depends on the
characteristics of the water body itself, such as water boundary
shape, depth, and fetch, as well as the reflection geometry [36].
Even bare soils, vegetated fields, and arid desert regions can
produce primarily coherent returns, as long as the surface rms
height satisfies the requirement Ra ≤ 1.

Efforts are ongoing to model the coherent component of the
received GNSS-R signal power [28], [37]–[40]. For a large
plane surface characterized by a small-scale roughness, it can
be expressed as

〈|Ycoh(τ, f )|2〉 = Pt Gt

4π(Rt + Rr )
2

λ2Gr

4π
|χ(τ, f )|2γ |	|2ψ (3)

where Pt Gt is the equivalent isotropically radiated
power (EIRP) of the transmitted signal, Gr is the receiver
antenna gain, Rt and Rr are the distance from transmitter
and receiver to the specular point, respectively, and χ is
the Woodward ambiguity function (WAF). From (3), it is
also understood that the received power is proportional
to three parameters associated with the properties of the
scattering surface: the attenuation factor γ due to vegetation
absorption and volume scattering (γ = 1 in the absence
of vegetation), the Fresnel reflection coefficient |	|2 of the
mean surface, and the decorrelation factor ψ = e−4R2

a due to
surface roughness that depends on the Rayleigh parameter.
However, this equation does not apply to coherent scattering
from heterogeneous scenes with both land and water around
the specular point, such as wetlands, or from surfaces that
are nonhomogeneous in terms of roughness, such as inland
water bodies that generally have different areas with different
values of Ra . In order to capture the variability of the surface
properties, a surface integral can be introduced that accounts
for the different contributions across a small reflecting
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surface S around the specular point [38]. This gives〈|Ycoh(τ, f )|2〉
= Gr Gt Pt

(4π)3

∣∣∣∣
∫∫

S

jk
√
γψ cos (θ)	(θ)χ( f, τ )

R1 R2
e− jk(R1+R2)d S

∣∣∣∣
2

.

(4)

For small values of Ra , the surface behaves like a specular
reflector, only slightly degrading the coherence of the reflected
signal. Still, theoretical models predict the presence of a weak
incoherent component [41]. As the surface roughness increases
(Ra > 1), the coherent component of the reflected GNSS
signal quickly vanishes, whereas the incoherent component
becomes progressively stronger, such as on rough or densely
vegetated surfaces. These incoherent returns are produced by
diffuse scattering mechanisms that take place due to the ran-
dom structure of the terrain surface and volume scattering [42],
[43]. In this case, the power is modeled by the bistatic radar
equation [44]

〈|Yinc(τ, f )|2〉 = λ2 Pt

(4π)3

∫∫
Gt Gr |χ(τ, f )|2

R2
1 R2

2
γ σ 0d S (5)

where R1 and R2 are the ranges from the transmitter and
the receiver to the point on the surface, respectively, γ is
a vegetation attenuation parameter, and σ 0 is the surface
normalized bistatic radar cross section (NBRCS).

The predominance of one component over another has
an effect on the achievable spatial resolution, an aspect of
considerable importance for remote sensing applications. In a
coherent scattering regime, the returns are confined to the spec-
ular point and a small region around it, to first order taken to be
the FFZ [40] with dimensions dependent on the observation
geometry. Typically, the FFZ is smaller than 1 km from an
low Earth orbit (LEO) satellite. Strictly speaking, the accurate
quantification of the spatial extension of the contributing
region for inhomogeneous scenes in coherent reflection regime
is still under discussion, as pointed out in recent studies [38],
[45], [46]. Coherent scattering results in a DDM characterized
by a strong peak power in the delay-Doppler bin corresponding
to the position of the specular point and a concentration of
power in a few bins around the peak. In this case, in fact,
the reflected waveform has the shape of the GNSS signal
ambiguity function. However, for inhomogeneous scenes, the
peak power fluctuates with characteristics of the contributing
Fresnel zones. By contrast, in incoherent scattering regime,
the size of the scattering area extends further away from
the first few Fresnel zones, increasing along with the surface
roughness. This translates into a DDM where the power is
spread over many more delay-Doppler bins and the reflected
waveform is wider and weaker than the coherent one.

III. COHERENCE METRIC

The received GNSS-R signal is usually given as a superpo-
sition of replicas of the scattered signal in the continuum [28].
This model will be adopted in Section III-A to obtain a discrete
vector representation of the received waveform where both
coherent scattering and incoherent scattering are included as
in (1) for powers. Given the received signal model, a metric

for determining the level of signal coherence is derived in the
following. The idea relies on the generalized eigendecomposi-
tion (GED) of the complex correlation matrix of the received
signal (Section III-B) and exploits the concept of information
entropy, derived in Section III-C.

A. Received Signal Model

The GPS transmitted C/A signal s(t) is given as [47]

s(t) = c(t)e j(2π f0t+φ) (6)

where f0 is the carrier frequency, φ is the carrier phase, and
c(t) is the C/A code with the embedded navigation signal.
The received signal y(t) is the sum of a coherent component,
an incoherent component yinc(t), and the thermal noise n(t),
which is usually modeled as a white Gaussian random process.
The coherent component in [38] can be approximated by a
finite number of returns from surface patches, and therefore,

y(t) =
D∑

n=1

Ans(t − tn)e
j2π fn t + yinc(t)+ n(t) (7)

where D is the number of scattered components of the coher-
ent contribution, each having an amplitude An , a delay tn , and
a frequency shift fn . The amplitude of the received coherent
returns from each surface patch of area δS, omitting for ease
of notation the dependence of all terms by the patch index, is

A = jk E0
√
γψ cos (θ)	(θ)δS

4πRt Rr
e− jk(Rt +Rr ) (8)

where E0 denotes the amplitude of the transmitted field. Note
that, if the surface is homogeneous and flat, the power of the
coherent component is given in (3).

At the receiving front end, the signal is downconverted and
correlated with a local replica of the transmitted pseudorandom
noise (PRN) code sequence, over a time interval T, for
different Doppler frequency values. This operation leads to
the generation of the delay-Doppler map

Y (τ, f ) =
D∑

n=1

Ane− j2π f0tnχc(τ − tn, f − fn)

+ Yinc(τ, f )+ N(τ, f ) (9)

where χc(·,·) is the ambiguity function of the transmitted PRN
sequence, Yinc(·,·) is the incoherent component of the delay-
Doppler map, and N(·,·) is the cross correlation between the
Doppler-shifted PRN sequence and the noise process. There-
fore, the additive noise is colored with correlation length τc,
that is, the chip duration of the PRN sequence. The zero-
Doppler complex delay profile, in the variable τ , can be
expressed as

z(τ ) =
D∑

n=1

Ane− j2π f0tn rc(τ − tn,− fn)+ yinc(τ )+ n(τ ) (10)

where rc(τ, fn) denotes the fn Doppler frequency cut of the
WAF, which is given by

rc(τ, fn) = 1

T

∫ T

0
c(t)c(t + τ )e− j2π fn t dt (11)
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that is approximately a triangular function in the variable τ
with delay spread ±τc around the correlation peak. In (10),
yinc(τ ) is the zero Doppler complex delay profile of the
incoherent component and n(τ ) = N(τ, 0).

The delay profile signal is sampled at M equispaced
lags to obtain a delay profile vector z = z(i Ts) =
[z(τ1), z(τ2), . . . , z(τM )]T . It is assumed that the sampling
period Ts is chosen to be a small fraction of the chip duration.
This ensures that the overall number of delay samples M is
greater than the number D of components of the coherent
contribution, a condition that will be clarified later. From (10),
the vector z can be expressed as

z =
D∑

n=1

Ane− j2π f0tn rc(tn,− fn)+ ν (12)

where rc(tn,− fn) = [rc(τ1 − tn,− fn), rc(τ2 − tn,− fn),
. . . , rc(τM − tn,− fn)]T is the “steering vector” or mode
vector and ν is the sum of the incoherent contribu-
tion vector yinc = [yinc(τ1), yinc(τ2), . . . , yinc(τM)]T and
the noise vector n = [n(τ1), n(τ2), . . . , n(τM)]T . Denoting
also as � = [rc(t1,− f1), rc(t2,− f2), . . . , rc(tD,− fD)] the
(M × D) steering vectors matrix and g = [A1e− j2π f0t1 ,
A2e− j2π f0t2 , . . . , ADe− j2π f0tD ]T the path-gain vector, the delay
profile can be finally written in the vector form

z = �g + ν. (13)

From a geometric point of view, the data vector z can be
visualized as a vector in the M dimensional space. In the
absence of noise and incoherent contribution, it is confined
to the signal subspace whose dimension is not greater than
the number D of signal components. Therefore, the condition
M > D ensures that a subspace of dimension M − D contains
only the incoherent and noise contributions. This property will
be exploited in Section III-B where the eigendecomposition
of the data vector correlation matrix is used to investigate the
dimensionality of the signal subspace or, in other words, the
number of coherent components.

B. Signal Eigendecomposition

The linear form in (13) has gained great interest in the
context of multiple signal classification (MUSIC) where the
problem is to determine the parameters of a combination of
waveforms received by an array of sensors [48]–[50]. Applica-
tions include estimation of the number of signals and direction
of arrival in communication theory and target tracking in radar
systems. Indeed, in GNSS reflectometry, a number of coher-
ently reflected waveforms with different amplitudes, delays,
and phases are sensed from several positions of the receiving
platform, which generates a synthetic array of sensors. With
reference to the model derived in Section III-A, this section
provides the basic framework for application of the signal
decomposition to the problem of finding a signal coherence
metric. Thus, from (13), the correlation matrix of the vector z
can be calculated as

R = �G�H + Rν (14)

where the notation (·)H indicates the Hermitian operator,
G = E[ggH ] is the path-gain correlation matrix, and Rν can
be expressed as

Rν = E
[
ννH

] = σ 2Rc + Rinc
y . (15)

Note also that Rc is a Toeplitz matrix whose klth element is
the autocorrelation function of the PRN sequence at lag k − l
and Rinc

y is the autocorrelation function of the incoherent com-
ponent, where it is also assumed that the mutual correlation
between the noise and the incoherent component is identically
zero.

The GED

Rei = λi Rνei , i = 1, 2, . . . ,M (16)

performs a simultaneous diagonalization of R and Rν . Denot-
ing by � the eigenvectors matrix and by � the eigenvalues
matrix, (16) can be written as

R� = Rν�� (17)

that fulfills {
�T R� = �

�T Rν� = I.
(18)

Equation (16) requires three conditions to be met. First,
the columns of � are linearly independent. Second, G is not
singular. Third, the number of samples of the delay profile
vector is greater than D (M > D) [48], [49].

Several observations are useful:
1) The matrix R is not known. It can be estimated from N

sequential snapshots of the delay profile vector as

R̂ = 1

N
ZZH (19)

where Z is the M × N matrix whose columns are the
N sequential snapshots of the delay profile vector z(n).

2) The matrix Rν is known as regards the thermal noise
component Rc, whereas the incoherent component is
unknown nor can it be estimated from data. In the
applications, only correlation of the thermal noise will
be considered. A study on correlation in sea surface
reflections can be found in [51] where the authors show
that the correlation matrix of the incoherently scattered
component extends around the main diagonal for posi-
tive values of the delay. Neglecting such component is
expected to unfavorably affect the overall performance
of the decomposition when the power of coherent and
incoherent components is comparable.

In the following, the delay profile vector will also be
referred to as waveform. It is worth noting that even if the
estimation of the autocorrelation matrix requires a sequence
of waveforms, the subspace analysis depends mainly on the
intrawaveform correlation and not on the correlation among
the different waveforms. The optimal choice of N and M
parameters will be explained in Section IV-D.
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C. Entropy of Eigenvalues

The Von Neumann entropy was introduced in quantum
mechanics as a measure of information in a system described
by the density matrix S [52]. Its definition is commonly given
as

H = −Tr(S log S) (20)

where S is a symmetric k × k positive semidefinite matrix,
whose trace is 1. The Von Neumann entropy is equal to
the Shannon entropy of a random variable whose probability
distribution is given by the normalized eigenvalues. Some
properties of the Von Neumann entropy are useful for the
following discussion.

1) Nonnegativity: The Von Neumann entropy is nonnegative
and bounded between 0 and log k, where k is the matrix
dimension. By choosing a base-k logarithm in (20), the entropy
is bounded in (0, 1).

2) Minimum Value: The minimum value of the Von Neu-
mann entropy is obtained when the system is in a pure state,
corresponding to a density matrix that is a rank one projector.
This is true if only one eigenvalue of the density matrix is
different from zero.

3) Maximum Value: The maximum value of the Von Neu-
mann entropy corresponds to maximally mixed states. It is
obtained when all eigenvalues are equal.

The meaning and properties of entropy suggest to use it
as a valid indicator for the presence of coherent components,
that is, a signal subspace well separated from the subspace
corresponding to incoherent scattering and noise. The case
of only one, strong coherent component can be perfectly
associated with a pure state, whereas the absence of coherent
components corresponds to maximally mixed states that well
model a signal dominated by incoherent scattering. The Von
Neumann entropy will be calculated after the GED that
transforms the correlation matrix R into a diagonal matrix,
is performed. A normalization is also needed to get a density
matrix. The proper normalization factor is given by the sum
of the eigenvalues, which is the trace of the diagonal matrix.
Therefore, the proposed coherence metric is the entropy of the
matrix

S = �T R�

Tr
(
�T R�

) . (21)

First, it should be noted that in the presence of noise, the
condition of pure state, corresponding to a rank-one density
matrix, cannot be strictly achieved. However, if a strong
coherent component is present, the signal subspace is very well
separated from the noise subspace, the first eigenvalue is much
higher than the others, and the entropy is very close to zero.
A second comment is about a particular confounding condition
that could arise due to the estimation of the correlation matrix,
as assumed by (19). Since the pure state corresponds to a
rank-one density matrix, it could be obtained, in absence of
noise, in the case that all snapshots are the same, whatever
the nature of coherence is. Fortunately, this situation is only
ideal because the coefficients in the path-gain vector g are well
modeled as random variables and the path-gain correlation
matrix G cannot be rank-one, even when estimated from data.

In the experimental analysis presented in the following, the
Von Neumann entropy will be used to assess the degree of
coherence of the scattered signal under different conditions
related to the presence of water and to its state.

IV. EXPERIMENTAL SETUP

A. Study Area

Lake Okeechobee was chosen as test site to illustrate
and validate the entropy-based coherence metric. The lake
extends for 1800 km2 on the south-central portion of the
Florida peninsula at latitudes 27◦12′N–26◦40′N and longitudes
81◦07′W–80◦37′W, as shown in Fig. 1(a). This lake is very
shallow (mean depth ∼3 m) with respect to its size, with
water depths varying as a function of rainfall, flood control
discharges, and water supply deliveries. As shown in Fig. 1(b),
Lake Okeechobee is a heterogeneous ecosystem, made up of
three distinct ecological zones: 1) a littoral zone comprised
of a 400-km2 mixed marsh community of submerged aquatic
vegetation and emergent vegetation along the west and south
shoreline; 2) a 200-km2 shallower near-shore zone (0.5–2 m
deep) underlain by sand and peat sediments with varying water
quality and coverage of submerged aquatic vegetation; and 3) a
1200-km2 central pelagic zone with nutrient-rich turbid water,
too deep (3–5 m) to support any plants.

B. CYGNSS Data

CYGNSS is a constellation of eight small satellites,
launched into LEO in December 2016. Each spacecraft has
a GNSS-R payload on board capable of receiving four simul-
taneous reflections, within a latitudinal range of approximately
±38◦, so the full constellation can make up to 32 mea-
surements simultaneously [16], [54]. Apart from DDMs and
the bistatic radar cross sections, which are the main data
products of this mission, the CYGNSS receivers can also
be initiated by ground commands to record Raw-IF GNSS
signal samples from the zenith-pointing antenna and the two
starboard and port antennas for a short time period (∼60 s).
Raw-IF data are recorded with 3.8724-MHz center frequency
and 16.0362-MHz sampling rate and quantized as 2-bit sam-
ples. Raw-IF CYGNSS data are recorded as a bytes stream
that incorporates bit pairs from zenith, starboard, and port
antennas. A customized Raw-IF processor has been developed
by the authors for achieving controlled signal quality, high
temporal resolution, and phase coherency. Recorded data must
be synchronized with the Level-1 corresponding product to
recover the ancillary information that is recorded as metadata.
Orbital positions and velocities of satellites are interpolated
with millisecond accuracy and the specular point is estimated
using corrections for mean sea level and terrain elevation. The
processor makes use of the Zenith channel to acquire precise
carrier frequency and code delay that are used for accurate
calculation of the specular point delay. The complex autocor-
relation calculated from the nadir antenna signal is produced
for each millisecond. The small residual delay that is possibly
accumulated during the orbital track is estimated and corrected
to produce a well-aligned array of zero-Doppler waveforms.
CYGNSS data products are available to the public at the
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Fig. 1. (a) Overview of the study area. (b) Map of Lake Okeechobee showing its major ecological zones: littoral zone, near-shore zone, and pelagic zone [53].
L001, L005, L006, and LZ40 are the weather stations managed by SFWMD.

NASA Physical Oceanography Distributed Active Archive
Center (PO.DAAC; https://podaac.jpl.nasa.gov/CYGNSS).

The analysis was carried out using five CYGNSS Raw-IF
tracks acquired in March and June 2020 over Lake Okee-
chobee, in order to explore the sensitivity of the entropy to
adjacent land wetlands and different states of open water.

C. Validation Data

Several types of data have been used to support the
evaluation of the coherence metric. Two ascending VV/VH
Sentinel-1 (S-1) synthetic aperture radar (SAR) data have been
examined in two dates closest in time to the CYGNSS tracks,
i.e., February 27, 2020 and June 2, 2020. The local time of
the ascending S-1 acquisitions is 6 A.M. In general, for a
polarimetric SAR, four scattering mechanisms can occur on
wetlands. Calm flat water leads to specular reflection, which
results in low backscatter close to the radar noise floor. Rough
surfaces, such as soil or water rippled by wind, produce
single-bounce scattering. Vegetation typically gives rise to
diffuse scattering and attenuates the microwave depending
on vegetation height, structure, and dielectric constant. The
presence of a flat surface covered by vegetation, especially
vertical stems, can lead to double-bounce scattering return,
which has typically larger intensity than the other scattering
types. All four scattering types can dominate or can be
mixed within the radar resolution cell depending on surface
and vegetation characteristics, incident angle, radar frequency,
bandwidth, and polarization. High-frequency microwaves
(X- or C-band) tend to penetrate through close canopy by only
a few centimeters and are sensitive to small-scale roughness;
low-frequency microwaves (L- or P-band) penetrate deeper
in the vegetation and tend to produce more double-bounce
scattering. Full-polarimetric radars enable a better separation
of the scattering mechanisms, unlike dual-polarimetric SARs,
such as Sentinel-1, which offer a limited interpretation of
the scattering process. In typical grayscale SAR backscat-
ter images, wetlands appear dark over calm open water
and brighter over vegetation and rough surfaces. Vegetation

scattering can appear more speckly than surface scattering
and it is typically relatively brighter in the HV polarimetric
channel compared with the HH or VV polarimetric channels.
A composite of RGB colors for each Sentinel-1 image was
made using the VV channel for red, VH channel for green,
and the ratio |VV|/|VH| for blue in order to facilitate the
visual interpretation of the land cover in the study area. It can
be observed that water and flat bare soil appear with various
shades of blue, while vegetated areas appear as yellow/green.
In contrast, the light purple/pink/red colors denote the presence
of inundated vegetation.

Two different maps have been considered to account for
the specific vegetation cover within the western marsh portion
of Lake Okeechobee. The first map is provided by the South
Florida Water Management District (SFWMD) and, through
polygon feature classes, defines the extent and type of littoral
vegetation for 2016, as shown in Fig. 2(a). Unfortunately,
no such maps are available for 2020 when the CYGNSS
tracks analyzed in this article were acquired. The second
map, produced by the U.S. Fish and Wildlife Service and
made available via the wetlands mapper [55], depicts the
type and extent of wetlands for 2020 as defined in [56]
[Fig. 2(b)].

Finally, wind data have been obtained from the SFWMD’s
DBHYDRO database (https://www.sfwmd.gov/science-
data/dbhydro). SFWMD operates weather stations on Lake
Okeechobee at the locations shown in Fig. 1 (L001, L005,
L006, and LZ40). These data include daily mean and
instantaneous measurements (at 15-min intervals). Table I
shows the speed and direction of wind for each acquired
CYGNSS track.

D. Parameters Setting

The estimation of the autocorrelation matrix requires N
sequential delay profiles of length M . The choice of N
and M has a significant impact on the performance of the
entropy-based coherence metric.
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TABLE I

WIND VALUES ACQUIRED FROM SFWMD WEATHER STATIONS FOR THE FIVE TRACKS ANALYZED. TWO VALUES ARE REPORTED FOR EACH TRACK:
WNVS, WHICH IS THE VECTOR WIND SPEED IN m/s, AND WNVD, WHICH IS THE VECTOR WIND DIRECTION IN DEGREES CLOCKWISE FROM

NORTH. INSTANTANEOUS MEASUREMENTS CLOSEST TO THE CYGNSS ACQUISITION TIME HAVE BEEN CONSIDERED

Fig. 2. Land cover classification in the southwest region of Lake Okeechobee.
(a) Map of the types of vegetation for 2016, as reported by SFWMD. (b) Map
of the types of wetland for 2020, available via wetlands mapper.

Regarding the number M of samples of each delay profile,
it must be considered that the width of the theoretical delay
profile is 2τc � 2 · 10−6 s, being defined by the WAF. Since
the sampling rate of CYGNSS Raw-IF data is 16.0362-MHz,
the smallest window length required to capture the peak must
be 32 samples. Nevertheless, two further aspects have to be
taken into consideration: a possible window misalignment with
respect to the specular point and the waveform broadening due
to diffuse scattering. This leads to an increase in the size of the
window. It should be noted that by enlarging the window, there

is the possibility of including samples that contain thermal
noise only in the estimation of the correlation matrix, whose
effect is to increase entropy. A good tradeoff is represented by
48 samples, a value obtained by increasing 32 by 25% each
side.

As concerns the number of delay waveforms, N has a sig-
nificant impact on the spatial resolution. Since the waveforms
used to estimate the single autocorrelation matrix are obser-
vations related to different specular points as the receiver
moves, each entropy value will be representative of an elon-
gated footprint along track. As a result, the higher is N ,
the higher is the probability that within the observed area,
the heterogeneity of the targets increases with consequent
inability of the algorithm to differentiate. This translates into
degradation of spatial resolution. In light of these consider-
ations, each autocorrelation matrix has been estimated from
N = 16 waveforms, to which corresponds a resolution
along the track of about 700 m (depending on how large
the FFZ is).

V. RESULTS

Two major land cover types can be identified in the area of
Lake Okeechobee. The first land cover is open water and will
be used hereafter to test the sensitivity of the entropy-based
metric to surface roughness generated by the wind. The second
type of land cover is wetland and will be used to test the
sensitivity of the entropy-based metric to different vegetation
types and water beneath vegetation.

A. Sensitivity of Entropy to Open Water Roughness

Results of entropy calculated from tracks acquired under
different wind conditions are discussed hereafter. As explained
in Section II, the wave coherence is mainly determined by the
small-scale surface roughness that, for inland water bodies,
is mainly due to wind-driven surface waves. As the wind speed
and fetch increase, the height of the waves and their peak
wavelength will also increase. This effect for the lakes was
thoroughly investigated in [36].

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 27,2022 at 05:04:51 UTC from IEEE Xplore.  Restrictions apply. 



5613413 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 3. Entropy results calculated on five tracks acquired on (a) February 22, 2020, (b) February 29, 2020, (c) June 4, 2020, (d) June 7, 2020 (1), and
(e) June 7, 2020 (2). For each track, the entropy is superimposed on the temporally closest Sentinel-1 false-color composite. White dots represent weather
stations operated by SFWMD. The arrows show the wind direction and their length is proportional to the wind speed, according to Table I. Also, for each
track, the peak SNR and 1-entropy are shown in the second plot.

Fig. 3(a) and (b) shows the entropy values calculated from
acquisitions on Lake Okeechobee in high wind conditions,
which cause significant wave heights favored by the large
size of the lake itself. As expected, the entropy is close to
1 (�0.8) on the whole pelagic zone, which provides evidence
for a strongly incoherent reflection. The crossing of the lake
shoreline for both tracks is clearly visible by the abrupt jump
of entropy from 0.8 to 0.2. This strong coherence detected in
the area near the lake shore can be attributed to shallow water
or to short enough fetch that limits the waves’ height.

A similar behavior is also observed for moderate wind
speed [see Fig. 3(c) and (d)]. Incoherent returns are detected
on open water, with entropy values comparable to those

observed in case of high wind speed. In contrast to the west
shore, entropy gradually decreases near the east shore of
the lake. This change indicates various levels of roughness
that could be related to the value of fetch, which, in turn,
depends on the wind direction, as evidenced by the simulations
in [36].

Finally, Fig. 3(e) shows the entropy in low wind conditions.
The calm waters of the lake generate the coherent scattering
that is captured by entropy that takes very low values (�0.2).
The beginning and the end of the pelagic zone are indicated
by the two lower peaks at these points.

The peak SNR for each track has also been reported in
Fig. 3. Peak SNR is here defined as the ratio of the signal
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Fig. 4. Zoom over the marshy west region of Lake Okeechobee shown in Fig. 3 for the CYGNSS tracks acquired on (a) February 22, 2020, (b) February
29, 2020, (c) June 4, 2020, (d) June 7, 2020 (1), and (e) June 7, 2020 (2). Three plots are also provided for each track: the first plot shows the CYGNSS
entropy, the second plot displays Sentinel-1 backscatter values along transects corresponding to CYGNSS tracks and averaged within the FFZ, and the third
plot reports the coefficient of variation calculated for each FFZ.

power minus the noise power to the noise power. Signal
power was estimated at the specular point, whereas noise

power was computed by averaging a subset of samples of the
zero-Doppler delay waveform where the signal was absent,
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i.e., located at negative delays, sufficiently far from the spec-
ular point. As shown in Fig. 3, peak SNR plots show high
correlation with 1 − H . This is due to the reflected power in
the forward scattering from rough surfaces; in the presence of
larger roughness, both signal coherence and scattered power
in the specular direction reduce. However, SNR curves reveal
greater variance than entropy and some difficulty in identify-
ing regions where partially coherent scattering occurs. Thus,
an advantage of using the entropy metric is that the scattered
waveform is accounted more extensively in its shape, in con-
trast to the peak SNR that only accounts for a single value.
In addition, unlike SNR, entropy has a fixed dynamic range
between 0 and 1, allowing for straightforward comparison of
coherence detection in a wide range of situations and for a
variety of targets. Automatic detection of dominantly coherent
and incoherent returns could be implemented by setting a fixed
threshold value between 0 and 1 on the estimated entropy.

B. Sensitivity of Entropy to Wetland Type

The marshy west region of Lake Okeechobee, as shown
in the most recent map available in Fig. 2(a), is a mosaic
of diverse vegetation types, including spikerush (Eleocharis
cellulosa), cattail (Typha), willow (Salix caroliniana), tor-
pedograss (Panicum repens), and smartweed (Polygonum
hydropiperoides). The spatial distribution and composition of
plant communities undergo year-to-year variation, primarily
as a function of water level change. For example, over the
past years, the spatial extent of willow has declined, while
the cattail has expanded to surround spikerush sloughs in the
interior littoral zone [57].

In order to corroborate the entropy-based metric on this
marshy area, backscatter values of Sentinel-1 along tran-
sects corresponding to CYGNSS tracks are also provided in
Fig. 4. More specifically, for each entropy value, the mean
of the S-1 pixels falling within the corresponding FFZ was
calculated. Furthermore, to account for scene heterogeneity
inside the FFZ, the coefficient of variation, defined as the
ratio of standard deviation to the mean of the pixels, was
computed. Focusing on the left portion of the CYGNSS track
in Fig. 4(a), the entropy shows a sharp transition from high
(>0.5) to low values (<0.4). From the comparison with the
land cover classification maps in Fig. 2, samples with high
entropy are characterized by freshwater emergent wetland as
shown in Fig. 2(b), whereas samples with low entropy are
marked by floating/emerging vegetation shown in Fig. 2(a)
and by the lake delineated in Fig. 2(b). Therefore, the lower
values of entropy correctly indicate the presence of water
even when the surface is covered by floating vegetation.
Higher values of entropy characterize instead the area of
emergent vegetation that is generally a shore zone and only
temporarily flooded [56]. It is interesting to note that the
distinction between the two vegetation types is not visible
from the Sentinel-1 VH/VV composite, most likely due to
limited penetration of the C-band microwaves into vegetation
and inability to discriminate among different vegetation types.
Note also that entropy values drop further to below 0.2–0.3
over samples with low Sentinel-1 backscatter due to more

coherent reflection caused by the larger fraction of calm water
nonobstructed by vegetation within the CYGNSS footprint.
Continuing toward the right portion of the CYGNSS track,
entropy becomes high again, with values ranging between
0.75 and 0.9. This segment starts where Sentinel-1 data show
a clear reduction in VH/VV composite backscatter due to the
presence of open water. However, the presence of peaks in
the backscatter curves at the index 150–225 is attributable
to averaging within the FFZ, which encompasses areas with
different cover types (lake and land) as confirmed by the
coefficient of variation. Interestingly, entropy values over open
water tend to be correlated with the “openness” of the water,
as observed from Fig. 4(b) and (c). In Fig. 4(b) and (c), the
right portion of the CYGNSS track falls on the open lake
(cf. with Fig. 3) where the effects of the wind are more
prominent compared to areas of open water surrounded by
land, such as those toward the middle and the left portion
of the track where entropy appears significantly lower. For
water covered by vegetation, entropy is consistently high near
the coast in Fig. 4(b)–(d) where Sentinel-1 samples are light
green [−81◦ longitude and 26.95◦ latitude in Fig. 4(c)]. These
samples have higher VH backscatter and, therefore, denser
or taller vegetation compared to the surrounding area, which
causes more absorption and a weaker, less coherent reflection
of the CYGNSS signal leading to higher entropy. Fig. 2(a)
reports willow/phragmites as dominant vegetation type in this
area also confirmed by the wetland classification in Fig. 2(b),
showing the presence of freshwater emergent wetland. Another
interesting feature of the entropy over wetlands is the inverse
correlation with the SAR double-bounce backscatter that
appears as purple samples in the Sentinel-1 images of Fig. 4.
These samples are visible as a cluster near the coast and also
interspersed with the green vegetated samples. Entropy tends
to be lower over Sentinel-1 purple pixels due to the less dense
vegetation or larger presence of water under vegetation, both
having the effect of increasing the double-bounce backscatter
(VV polarimetric channel) and the coherency of the CYGNSS
signal with a consequent reduction of entropy.

VI. CONCLUSION

The novel metric proposed in this article employs the Von
Neumann entropy concept introduced in quantum information
theory. Since the received GNSS-R signal is treated as a
quantum state, it can be associated with a pure state when
characterized by the presence of only one strong coherent
component or to a mixed state in the case of incoherent
components. In order to provide a suitable criterion for
investigating the coherence of GNSS-R signals (which is
equivalent to distinguishing a pure state from a mixed one), the
received coherent signal is modeled as the superposition of a
discrete, finite number of components. Thus, the density matrix
formalism was applied to the correlation matrix of the received
complex zero-Doppler delay waveforms. Indeed, it turns out
that entropy is a powerful tool, expressing very effectively the
dynamic range between the eigenvalues associated with the
coherently scattered component and the other eigenvalues.

A first validation of the entropy-based coherence metric
was provided by comparing results obtained on CYGNSS
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data over Lake Okeechobee with Sentinel-1 images. Upon
visual inspection, the sensitivity of entropy to forward scatter
over water and wetlands is evident. In the presence of a
strong coherent component, the entropy ranges from 0.18 to
0.4, such as on calm lake waters or on areas with floating
vegetation. In contrast, entropy ranges from 0.75 to 0.9 when
the incoherent component dominates, such as over rough
lake waters or densely vegetated areas. In the wake of this
initial analysis, it is worth investigating further the ability to
discriminate among different types of vegetation coverage.

Furthermore, the metric can be implemented onboard
GNSS-R receivers in space, in order to dynamically change
the incoherent integration time, depending on the degree of
coherence detected in real-time, thus achieving a marked
improvement in spatial resolution. In this perspective, numer-
ical calculation of entropy could be expensive. Nevertheless,
there are several techniques that allow entropy to be computed
efficiently and with a low memory occupancy.
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